In this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.
This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreA new type of the connected domination parameters called tadpole domination number of a graph is introduced. Tadpole domination number for some standard graphs is determined, and some bounds for this number are obtained. Additionally, a new graph, finite, simple, undirected and connected, is introduced named weaver graph. Tadpole domination is calculated for this graph with other families of graphs.
The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreIn this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreAbstract. The purpose of this work is to introduce and investigate new concepts of mappings namely nano paracompactmappings, nano locally limited, nano h-locally limited and finally nano-perfect in nano topology by using nano-closed sets. As well as, the relation between these concepts of mappings have been study in nano topology. Additionally, the nano topology groups of the types and advances results which are introduces in this work are very vital. We also presented the type of nano Lindeloff mappings, and the relations of them was introduce and discussed with several characteristics related it. Nano morphism also introduce.
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).