
Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2287

AN EFFICIENT ARTIFICIAL FISH SWARM ALGORITHM
WITH HARMONY SEARCH FOR SCHEDULING IN

FLEXIBLE JOB-SHOP PROBLEM
1ISHRAQ F. FAEQ, 2MEHDI G. DUAIMI, 3AHMED T. SADIQ AL-OBAIDI

1,2Dept. of Computer Science, College of Sciences, University of Baghdad, Baghdad, Iraq

3Dept. of Computer Science, University of Technology, Baghdad, Iraq.

E-mail: 1hiishraqhifouad@gmail.com, 2mehdi_duaimi@ymail.com, 3drahmaed_tark@yahoo.com

ABSTRACT

Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is
considered as a very complex to control. Hence generating a control system for this problem domain is
difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to
the sequencing one which allows the operations to be processed on any machine among a set of available
machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for
solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results
obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
solution. When it is the better one, it replaces with the artificial fish swarm solution from which this solution
was improvised. Meanwhile the best improvised solutions are carried over to the Harmony Memory. The
objective is to minimize a total completion time (makespan) and to make the proposed approach as a portion
of the expert and the intelligent scheduling system for remanufacturing decision support. Harmony search
algorithm has demonstrated to be efficient, simple and strong optimization algorithm. The ability of
exploration in any optimization algorithm is one of the key points. The obtained optimization results show
that the proposed algorithm provides better exploitation ability and enjoys fast convergence to the optimum
solution. As well, comparisons with the original artificial fish swarm algorithm demonstrate improved
efficiency.

Keywords: Artificial Fish Swarm Algorithm; Harmony Search; Makespan; Flexible Job-Shop Scheduling
Problem.

1. INTRODUCTION

Scheduling is a process of decision making and
an important tool in both the manufacturing and
service industries. It deals with the distribution of
operations on machines (i.e., the operations sequence
on machines) in a way that performance goal which
called makespan can be minimized. Scheduling of
activities should be efficient enough to use the
available resources in an effective manner. To
address these issues, shop scheduling has motivated
the researchers in both academia and industry. A
variety of scheduling problems have been
acknowledged from real-world manufacturing
environments.

In this paper, our interesting is in the flexible job
shop scheduling problem (FJSP) which is a
generalization of the conventional job shop problem.
Each operation can be performed by a given machine
that is selected from a limited subset of candidate

machines. The FJSP is more sophisticated and
complex than the traditional JSP since it appends a
new decision level to the sequencing one, i.e., the
machine assignment that involves the selection of
one machine among the available ones for each
operation. The target is to find an allocation for each
operation and to define the sequence of operations on
each machine to minimize the maximum competition
time called the makespan [1].

For its robustly NP-hard nature, many effective
heuristics and meta-heuristics methods are improved
and developed to get nearby optimal solutions which
satisfy the qualifications and minimize or maximize
the objective function ([1]; [2]; [3]; [4]; [5]). Among
these methods, we have Artificial Fish Swarm
Algorithm [6] Harmony Search Algorithm [7].

This paper investigates an Artificial Fish Swarm
Algorithm with Harmony Search (AFSA-HS) for
Flexible Job Shop Scheduling problem (FJSP). Most
species of animals show social behaviors. In some

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2288

species, this is the top member of the group which
leads all members of that group. For example, this
behavior pattern is very clear in lions, monkeys, and
deer. However, there are other classes of animals
which live together in groups but they don’t have a
leader. In this type of animals, each member has a
self-organized behavior which enables it to move
around its environment and response to its natural
needs with no need to leaders like birds, fishes and
sheep drives. This type of animals has no knowledge
about their group and the environment. Instead,
through exchanging data with their adjacent members
they can move in the environment. This simple
interaction among particles makes group behavior
more sophisticated as if we are looking for a particle
in a wide environment.

Artificial fish-swarm algorithm (AFSA) is a
relatively modern addition to the scope of natural
computing. It has elements inspired by the social
behaviors of naturalist swarms and linked with
evolutionary computation. AFSA has found as an
application widespread in complex optimization
domains, and presently a prime research topic,
offering an alternative to the more established
evolutionary computation techniques that may be
applied in many of the same domains.

The harmony search algorithm (HS) [8] is one of
the population-based meta-heuristics that emulates
the music improvisation process by musicians. In
other words, finding a relation between pitches to
attain a better state of harmony in music and
searching for optimality in optimization process
utilizing HS is much alike. This comprehensible
nature of HS and its simplicity have led to its
application in many optimization problems including
the traveling salesperson problem [8], vehicle routing
[9], pipe capacity design in water supply networks
[10] [11], water network design [12], educational
timetabling [13], and shop scheduling [14].

In this paper, we proposed an algorithm
combining AFSA with HS to solve the FJSP. AFSA
allows an extensive search for the solution space
while the HS algorithm is employed to reschedule the
results obtained from AFSA based on the new
improvised harmony, which will enhance the
convergence speed. The objective considered in this
paper is to minimize maximal completion time.

The remainder of the paper is organized as
follows. An overview of relevant literature is
discussed in section 2. The formulation and notation
of FJSP are introduced in Section 3. Traditional
AFSA and brief standard HS algorithm are described
in section 4. In Section 5, the proposed algorithm is
presented to solve the FJSP. The computational
results and its comparison with other algorithms are

shown in section 6. Finally, section 7 provides
conclusions and future works.

2. RELATED WORKS

AFSA is one of the preferable methods of
optimization among all the swarm intelligence
algorithms. This method is inspired by the
cooperative movement of the fish and their diverse
social behaviors, where it is considered as a parallel
and random search optimization algorithm based on
simulating fish’s behaviors in the water.

Hongwei and Liang [15] proposed an effective
artificial fish swarm algorithm with estimation of
distribution (AFSA-ED) for obtaining intelligent
scheduling strategies. They proposed the pre-
principle and post-principle arranging mechanism
and an integrated initialization algorithm for
enhancing the diversity and modified preying
behavior with estimation of distribution and embed
attracting behavior to the algorithm for improving the
global exploration of the algorithm. Besides, a public
factor based critical path search strategy is presented
to enhance the local exploitation ability.

Ge, et al. [16] proposed an efficient artificial fish-
swarm algorithm with estimation of distribution to
solve the flexible job shop scheduling problem with
the criterion to minimize the makespan. Considering
the interaction of two sub problems, they proposed
the pre-principle and post-principle arranging
mechanism to adjust the machine assignment and the
operation sequence with different orders. For
improving the global exploration of the algorithm,
they modified preying behavior with estimation of
distribution and embed attracting behavior to the
algorithm. The critical path based local search was
used to balance the exploration and exploitation.

Singh and Mahapatra [17] presented an efficient
quantum particle swarm optimization to find near-
optimal schedules. The switching operator used in the
genetic algorithm is included in QPSO to obviate
premature convergence and ameliorate the solution
diversity. Furthermore, solution diversity is
improved during the use of chaotic numbers (Logistic
map) in exchange for random numbers. Utilizing
chaotic number in the work provides solution
diversity and minifies computational burden.

ASADZADEH [18] presented a parallel and
agent-based local search genetic algorithm for
solving the job shop scheduling problem. Various
agents each with special behaviors is developed to
implement the parallel local search genetic algorithm
contained in a multi agent system. They parallelize
the genetic algorithm using the island model where
the population is partitioned into small

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2289

subpopulations and migration can happen between
neighbor subpopulation.

Al-Obaidi and Hussein [19] presented two
improved CS algorithms. In the first improvement,
the division of the generating solutions instead of the
deleted ones speeds up the convergence rate and
maintains a good amount of diversification. Because
Levy Fight gives the effectiveness of CS algorithm,
it proposed in the second improvement, to repeat it
multiple times in an acceptable ratio (IR). From the
experiments, they found (0.2) of the iterated Levy
flight is a suitable ratio for obtaining feasible
solutions while increasing this ratio has a time
consuming for finding better solutions.

Singh, et al. [20] proposed multiple objective
frameworks based on the quantum particle-swarm
optimization (QPSO) to create the predictive
schedules which can optimize the makespan and the
robust measures together at the same time. The
results denote that the proposed QPSO algorithm is
widely effective in minimizing the makespan in the
event which uncertainty is encountered in the terms
of stochastic machine breakdown. An exhaustive
empirical study is lead up to study the influence of
various proposed robustness measures on the
produced schedules using benchmark problems.

Alobaidi and Hussein [21] presented an
improvement to AFSA algorithm based on VND
local search for solving the Flexible Job Shop
Scheduling Problem (FJSSP). The Variable
Neighborhood Descent (VND) strategy is performed
on AFSA by different neighborhood structures to
improve and upgrade the performance of the original
AFSA. The VND local search used in AFSA-VND
provides the algorithms more intensification and
exploitation than original AFSA.

In Teekeng, et al. [22], EPSO was proposed to
solve flexible job shop scheduling problem (FJSP)
based on particle-swarm optimization (PSO). EPSO
comprises two groups of features for broadening the
solution space of FJSP and obviate precocious
convergence to a local optimum. These two groups
are as follows: (1) particle life cycle which consists
of four features: (i) courting call—increasing number
of more efficient offspring (the new solutions), (ii)
egg-laying stimulation— increasing number of
offspring from best parents (current solutions), (iii)
bi-parental reproduction—increasing diversity of the
pursue generation (iteration) of solutions, and (iv)
population turnover—succeeding the population
(current group of all solutions) in the previous
generation by a population in a new generation which
is as able but is much diverse than the previous one;
and (2) discrete position update mechanism—
moving particles (solutions) at the flight leader (best

solution), namely, interchanging several integers in
each solution with these ones in both the best solution
and itself, employing similar swarming strategy as
the update procedure of the continuous PSO.

Muthiah, et al. [23] proposed a hybridization
methodology of the Particle-Swarm Optimization
(PSO) and Artificial Bee Colony (ABC). The
optimization techniques reduce the time of the
makespan of the shops. In the ABC technicality, the
scout bee operation depending on the PSO
technicality updates the process velocity and position
of particles. The Hybrid Algorithm (HA) is elegantly
employed to significantly scale down the makespan
of the job scheduling function to the least possible.
On a close examination and contrast of the outcomes
with those of ABC, it is unequivocally established
that ABC algorithm is competent to achieve amazing
outcomes. The fascinating results substantiate the
fact the ground-breaking Hybrid algorithm (HA),
Particle swarm optimization (PSO) and Artificial Bee
Colony Optimization (ABC) have come out with
flying colors by ushering the least make-span interval
for all the standard issues addressed.

Finally, and as it is adduced in all the formerly
cited studies, different swarm intelligent and meta-
heuristics methods are applied to solve the FJSP
problem. The challenge is always to have the suitable
approach capable for better solving this problem. In
the present work, we propose artificial fish swarm
algorithm (AFSA) combined with harmony search
approach to find better performance than other
existing swarm intelligence and meta-heuristics in
terms of solution quality.

3. FLEXIBLE JOB SHOP SCHEDULING
PROBLEM

The flexible job-shop scheduling problem (FJSP)
is a popularization and extension of the traditional
job-shop scheduling problem (JSP) in which — prior
to the sequencing of operations — an assignment of
operations to machines is necessary. A central
proposition in classic job shop scheduling (JSP) is
that each operation ought to be processed on one
predetermined machine. In the fact, the actual
relevance of recently flexible job shop scheduling
(FJSP) approaches is lying that in practice, where
there are more than one machine that is able to
process a particular manufacturing task. FJSP was
introduced by Brandimarte [24]. Accordingly
expanded and generalized the traditional JSP such
that for each operation there would be more than one
possible machine assignment.

Flexible Job-shop Scheduling Problem (FJSP)
can be described as follows. There is a set of n
independent jobs J = {J1, J2, …, Jn} to be scheduled.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2290

Each job Ji consists of a predetermined sequence of
operations. Oi,j is the operation j of job Ji. Each job is
operated by a set of m machines M = {M1, M2, …,
Mm}. Each machine can process just one operation at
a time. Each operation can be processed without
interruption during its performance on one of the set
of machines. There are no precedence constraints
among operations of different jobs. We denote with
Pi,j,k the processing time of operation Oi,j when
executed on machine Mk . All machines are available
at time 0.

4. ARTIFICIAL FISH SWARM ALGORITHM
AND HARMONY SEARCH

In this section, a brief description of AFSA and
HS algorithm are given.

4.1. Artificial Fish-Swarm Algorithm (AFSA)

Artificial fish swarm algorithm (AFSA) is an
intelligent optimization method based on the
metaphor of behavior of the fish swarm. The basic
idea of AFSA is elaborated as follows. Since fishes
can always find the position full of nutrition by
themselves or by following the other fishes, thus the
space with the most survival is usually the place that
offers the most nutrients. Considering this
characteristic, artificial fish algorithm optimizes
systems by simulating all kinds of fish actions and
combines them with animals’ body model [25].
Every artificial fish (AF) in an AFSA framework
sets its behavior according to its actual state and its
environmental state, so it makes the use of the best
position performed by itself and its neighbors. The
optimization of AFSA is performed by three
behaviors, i.e., preying behavior, swarming
behavior, and following behavior.

Suppose Xi = (X1, X2, …, Xn) is the current
position of AFi; Yi = f (Xi) is the fitness function at
position Xi which can represent the objective
function. Visual is the visible distance of AF;
try_number is the try times of preying behavior; Step
is the maximum moving step of AF; δ is the crowd
factor; nf is the number of AFs within its visual. For
AFi , one target position Xt in its visual can be
described by Eq.(1), Rand() is a function that
generate random numbers in the interval [0,1]. Then
the AFi updates its state by using Eq. (2) when the
updating condition is satisfied. The AFSA are
summarized by the pseudo code shown in Figure 1
[21].

𝑋௧ = 𝑋 + 𝑣𝑖𝑠𝑢𝑎𝑙 ∙ 𝑅𝑎𝑛𝑑 (1)

𝑋 = 𝑋 +
𝑋௧ − 𝑋

‖𝑋௧ − 𝑋‖
 ∙ 𝑆𝑡𝑒𝑝 ∙ 𝑅𝑎𝑛𝑑() (2)

Artificial Fish Swarm Algorithm

Input: Initialization of population for the
problem, visual, try number, crowd factor.
Initialization of Xi for each artificial fish AFi (i
=1, 2, …, n)
Output: Best Solution
Evaluate each AFi, F(Xi) (i =1, 2, …, n)
bulletin = min F(Xi)
while (t <Max Generation)
 for each AFi do
 Perform Follow Behavior on Xi(t) and
compute Xi,follow
 Perform Swarm Behavior on Xi(t) and
compute Xi,swarm
 if F(Xi,follow) < F(Xi,swarm)
 Xi(t+1) = Xi,follow
 else
 Xi(t+1) = Xi,swarm
 end if
 end for
 if F(Xbest_AF) < F(bulletin)
 bulletin= Xbest_AF
 end if
end while

Figure 1: The AFSA Pseudo Code

The three behaviors of AF are described as follows:

a) Preying: Xt random position chosen within
Xi’s visible region using Eq.(1). If Yt < Yi, it moves a
step to Xt according to Eq.(2). Otherwise, it chooses
another Xt position and determines whether it
satisfies the requirement Yt < Yi. If it is still not
satisfied after try_number times, AFi chooses a
random position in its visual region and moves a step
towards this direction.

b) Swarming: Let Xc is the center position in
the visible region. If the center has more food and
low crowd degree as indicated by Yc ∙ nf < Yi ∙ δ, then
AFi moves a step towards Xc. Otherwise, AFi
executes default preying behavior.

c) Following: Suppose Xb is the best-found
position with high food consistence and low crowd
degree. Xb position is in the visible region of Xi
position if the position Xb has high food consistence
and low crowd degree as indicated by Yb ∙ nf < Yi ∙
δ, then AFi moves a step towards Xb. Otherwise, AFi
executes default preying behavior.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2291

4.2. Harmony Search Algorithm

HS is a population-based meta-heuristic
algorithm, developed in an analogy with musical
improvisation. In music performance, each music
player improvises one note at a time. All these
musical notes are combined together to form a
harmony, evaluated by aesthetic standards and
improved through practice after practice. In
optimization, every variable is assigned a value at a
time. All these values are combined together to form
a solution vector, evaluated by the objective function
and improved iteration by iteration. Due to the
rhythm and pitch of each instrument cannot be
instantly tuned, perfect harmony is not achieved at
first. However, continual practice to enhance the
harmony enable the musicians to memorize the
specific rhythm and pitch of each instrument, which
lead to “good harmony”. These collections of “good
harmony” are memorized and the unacceptable
collections are ignored as superior collections are
found. The updating process of the harmony
collections continues till the best harmony is
obtained. HS performs the process of harmony
enhancement and the “good harmony” collections
are saved to a solution space called harmony
memory (HM), which is HS unique feature
compared to other evolutionary optimization
algorithms.

HS algorithm contains a solution storage
function called HM that necessitates the definition of
two parameters: HM considering rate (HMCR) and
pitch-adjusting rate (PAR). For more details on HS,
please refer to [8] [26]. The major steps in the
structure of HS are as follows:

S1: Initialize the algorithm parameters.
S2: Initialize the harmony memory (HM).
S3: Improvise a new solution from the HM.
S4: Update the HM.
S5: Repeat S3 and S4 till the stopping criterion is
satisfied.

5. PROPOSED AFSA-HS FOR FJSP

A. Representation

In AFSA-HS, each AF represents a feasible
solution to the problem. Each AF is expressed by two
vectors: machine assignment vector and operation
sequence vector, which corresponds to the two sub
problems of the FJSP. The machine assignment
vector is represented by a vector of N integer values
which are the total number of operations. Each
element of the vector denotes the machine selection

of each operation and a value is which the index of
the array of alternative machine set. The operation
sequence vector is an un-partitioned permutation
with ni repetitions of job Ji (i = 1,2, ∙∙∙, n). The length
of operation sequence vector equals to N. The index i
of job Ji occurs ni times in the vector, and the k-th
occurrence of a job number refers to the k-th
operation in the technological sequence of this job.
For the problem in Figure 2, a representation:

operation sequence : 3 1 4 1 3 1 3 4 2 2 4 3

1st op of job 1 2nd op of job 1 3rd op of job 1

machine assignment:1 4 3 1 1 5 2 4 3 2 3 1

no. machine 4 no. machine 1 no. machine 5

Figure 2: AF Representation Scheme

B. An Improved AFSA Based on Harmony
Search algorithm

In this paper, we have proposed an improvement
of the original AFSA based on Harmony Memory
aiming to enhance the performance of AFSA. Also,
we use the HS algorithm with new harmony
improvising technique as a strategy for global search
in the proposed algorithm without requiring to the HS
parameters (PAR and HMCR). Hence we test HS
algorithm with AFSA algorithm for solving flexible
job shop scheduling problem. This improvising of
new harmony is considered as the key vector for
providing a good exploration to the entire search
space. In the AFSA-HS, the conception of Visual
represent the maximum number of solution’s
elements that exchange its location in the solution
vectors. Hamming distance is used to compute the
distance between the two solutions (Xi and Xj) which
is the number of solution’s elements that have a
different value at corresponding positions. In the
discrete space the forward step of AF will be taking
the same solution (position) that is evaluated as a next
better solution for each AF. This process represents
the AF movement. The pseudo code of the proposed
algorithm (AFSA-HS) is shown in Figure 3.

The HS in AFSA-HS is applied on the updated
AFs obtained in each iteration which are saved in
HM. Then they are taken with the global best solution
as inputs for more intensification around the best

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2292

solution area. The pseudo code of Harmony search is
shown in Figure 4.

AFSA-HS Algorithm

Input: Initialization of population for the
problem, visual, try number, crowd factor.
Initialization of Xi for each artificial fish AFi (i
=1, 2, …, n)
Output: Best Solution
Evaluate each AFi, F(Xi) (i =1, 2, …, n)
bulletin = min F(Xi)
while (t <Max_Generation)
 for each AFi do
 Perform Follow Behavior on Xi(t) and
compute Xi,follow
 Perform Swarm Behavior on Xi(t) and
compute Xi,swarm
 if F(Xi,follow) < F(Xi,swarm)
 Xi(t+1) = Xi,follow
 else
 Xi(t+1) = Xi,swarm
 end if
 end for
 Find Gbest_AF which has the best F(Xi (t+1)) (i
=1, 2, …, n)
 HM= updated AFs obtained in tth generation
 Perform HS Algorithm on Gbest_AF and
compute Gbest_HM

 if F(Gbest_HM) < F(Gbest_AF)
 Gbest_AF = Gbest_HM
 end if
 if F(Gbest_AF) < F(bulletin)
 bulletin= Gbest_AF
 end if
end while

Figure 3: Pseudo Code Of The Proposed AFSA-HS
Algorithm For FJSP

In HS, the available members in the memory are
used to construct new harmony at each generation.
Due to this reason, there is no need for an extra
memory where the population members
corresponding to the earlier generations are stored. A
new solution vector is generated which is computed
using the AFs in the memory by making some
swapping among the solution elements of the ith AF
randomly. The distance between new harmony and
ith AF is less or equal to Visual. Then the global best
solution is compared to the new improvised vector. If
the new vector is better than global best solution, the
algorithm will progress to the next step of replacing
the ith solution stored in the HM with the new vector.

Otherwise the ith solution is kept in HM. Hence
another new vector is generated from another AFi+1
(i+1th member) stored in the HM and so on for all
AFs stored in HM. After the search process is
completed by all employed AFs in HM, we compare
the global best solution to the global best solution
stored in HM. Then the better one is recorded in
bulletin board. Since this process has different
improvising vectors, it maintains some diversity
within the search and gives the proposed AFSA-HS
algorithm more exploitation around global best
solution. Also an enhancing in speed of the
convergence rate is achieved.

Harmony Search Algorithm

Input: Current best AF Solution Gbest_AF.
Set AF index i = 1
Output: Gbest_HM /* Global best solution in
Harmony Memory */
while stopping criterion is not satisfied /* each
AF in HM */
 /* Generate a new solution */
 Pick the ith value from the solutions
in HM
 /* New solution generated */
 Pertub the value picked
 if new solution better than the GBest_AFSA

solution (in terms of fitness)
 Replace the ith solution in HM with
new solution
 end if
 Increment the AF index i = i + 1
end while
Find Gbest_HM which has the best F(Xi (t+1)) in HM

Figure 4: The HS Algorithm Pseudo Code

6. EXPERIMENTAL RESULTS AND
DISCUSSION

To evaluate the performance of the AFSA-HS for
FJSP, we consider three sets of well-known
benchmark with 30 instances from Hurink, et al. [27]
[28]. Hurink data sets are three: edata, rdata, and
vdata. The jobs number ranges in each set from 6 to
30, machines number ranges between 4 and 15.
While the flexibility of each operation in the three
data sets edata, rdata, and vdata are 1.15, 2 and 2-7.5
respectively. In the original AFSA algorithm, the
moving step of the Artificial Fish is done in
continuous state space. Therefore, we adapt the
AFSA and AFSA-HS algorithms to be suitable for
searching in discrete state space of the problem by
some neighborhood strategies.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2293

The AFSA and AFSA-HS are coded and
implemented in MATLAB R2013a language on an
Intel Core i5 2.3 GHz. personal computer with 4GB
of RAM. The AFSA and AFSA-HS are applied to the
same instances of FJSP with the same value of
parameters. The algorithms AFSA and AFSA-HS run
5 independent times for each instance of edata, rdata,
and vdata. In order to obtain meaningful results we
calculated the average of the 5 test runs. The
measured performance is close to the lower bound of
the benchmark. To illustrate the quality of the results
obtained by the AFSA and AFSA-HS, the relative
error (𝑅𝐸) is introduced. 𝑅𝐸 is calculated by the
following Eq. (3):

𝑅𝐸(%) =
𝐴𝑀𝑆 − 𝐿𝐵

𝐿𝐵
× 100 (3)

where 𝐴𝑀𝑆 is the Average makespan for each
instance obtained by the corresponding algorithms.
𝐿𝐵 is the best-known solution or the lower bound of
the benchmark.

In Table 1 comparisons of makespan obtained by
AFSA and our proposed AFSA-HS on thirty FJSP
instances from Hurink data set are introduced. The 1st
column represents the name of the problem. The 2nd
column represents the size of the problem. The 3rd
column points to the lower bound of the benchmark.
The fourth and sixth columns represent the average
of makespan resulted from AFSA and AFSA-HS
respectively. Table 1 shows the best results from our
proposed algorithm for all 30 test instances of the
Hurink data sets (edata, rdata, and vdata) compared
to the best results obtained from the artificial fish-
swarm algorithm (AFSA). Where the compared
results are either the same or better than the best
solutions from AFSA or equal to the lower bound.

Our algorithm is different in its simplicity and it
is far from complexity and cost. It increases the
diversity of the solutions by improvising a new
harmony from each artificial fish searching for a
perfect state of harmony in terms of fitness. Thus it
produces a new solution around the existing solution
quality. The best harmonies will be carried over to the
harmony memory. Therefore we may get more than
one new harmony with fitness better than the fitness
of the global best solution. This led to an
improvement in the quality of the solution and the
speed of convergence towards the optimal solution.

Table 1: The Average Of Makespan Results Of Hurink
Data Sets By AFSA And AFSA-HS Algorithm

Instances
Size

n x m
LB

AFSA AFSA-HS
AMS AMS

edata-mt06 6 x 6 55 55 55

edata-mt10 10 x 10 871 985 912
edata-la1 10 x 5 609 620 609
edata-la2 10 x 5 655 691 658
edata-la3 10 x 5 550 578 564
edata-la4 10 x 5 568 606 590
edata-la5 10 x 5 503 518 503
edata-la6 15 x 5 833 860 833
edata-la7 15 x 5 762 811 778
edata-la8 15 x 5 845 869 851
rdata-mt06 6 x 6 47 48 47
rdata-mt10 10 x 10 679 848 754
rdata-la1 10 x 5 570 605 582
rdata-la2 10 x 5 529 563 544
rdata-la3 10 x 5 477 509 488
rdata-la4 10 x 5 502 540 516
rdata-la5 10 x 5 457 482 466
rdata-la6 15 x 5 799 827 804
rdata-la7 15 x 5 749 787 755
rdata-la8 15 x 5 765 797 770
vdata-mt06 6 x 6 47 47 47
vdata-mt10 10 x 10 655 773 677
vdata-la1 10 x 5 570 599 577
vdata-la2 10 x 5 529 579 538
vdata-la3 10 x 5 477 508 486
vdata-la4 10 x 5 502 536 511
vdata-la5 10 x 5 457 484 469
vdata-la6 15 x 5 799 829 807
vdata-la7 15 x 5 749 781 755
vdata-la8 15 x 5 765 785 770

The bold style of data mean the best results among the
compared algorithms or the ideal makespan

The comparison between the proposed AFSA-HS
algorithm and the results obtained by other
algorithms is expressed in Table 2. In this table,
comparisons of the average percentage of relative
error from the lower bound of our proposed AFSA-
HS algorithm to the average percentages of relative
error of the (CS-BNG, and CS-ILF) [19] and AFSA-
VND [21] algorithms on thirty FJSP instances from
Hurink data sets are prepared. The fifth, eighth,
eleventh and fourteenth columns represent the
relative error. In addition, the sixth, ninth, twelfth,
and fifteenth columns represent the percentage of
improvement. The percentage improvement (𝑃𝐼) for
makespan using AFSA-HS over AFSA is defined as
follows:

𝑃𝐼(%) =
𝐴𝑀𝑆ிௌ−𝐴𝑀𝑆ிௌ_ுௌ

𝐴𝑀𝑆ிௌ

× 100 (4)

Furthermore Table 2 indicates that a maximum of
percentage improvement attainable by AFSA-HS is
12.42 with a vdata mt10 whilst it is 4.84 by AFSA-
VND with a vdata la2 for the benchmark problems
considered in this study.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2294

Table 2: Comparison Of Percentage Relative Errors And Percentage Improvement Obtained By Using AFSA-HS,
AFSA-VND, CS-BNG, And CS-ILF On Hurink Data Sets

Instances
Size

n x m
LB

AFSA-HS AFSA-VND CS-BNG CS-ILF
AMS RE(%) PI(%) AMS RE(%) PI(%) AMS RE(%) PI(%) AMS RE(%) PI(%)

edata-mt06 6 x 6 55 55 0.00 0.00 55 0.00 0.00 55 0.00 1.79 55 0.00 1.79
edata-mt10 10 x 10 871 912 0.05 7.41 953 0.09 3.25 986 0.13 17.21 979 0.12 17.80
edata-la1 10 x 5 609 609 0.00 1.77 617 0.01 0.48 636 0.04 12.76 634 0.04 13.03
edata-la2 10 x 5 655 658 0.00 4.78 686 0.05 0.72 707 0.08 9.71 694 0.06 11.37
edata-la3 10 x 5 550 564 0.03 2.42 568 0.03 1.73 593 0.08 11.09 588 0.07 11.84
edata-la4 10 x 5 568 590 0.04 2.64 598 0.05 1.32 620 0.09 12.55 619 0.09 12.69
edata-la5 10 x 5 503 503 0.00 2.90 511 0.02 1.35 525 0.04 13.22 526 0.05 13.06
edata-la6 15 x 5 833 833 0.00 3.14 850 0.02 1.16 864 0.04 11.48 861 0.03 11.78
edata-la7 15 x 5 762 778 0.02 4.07 799 0.05 1.48 818 0.07 14.79 819 0.07 14.69
edata-la8 15 x 5 845 851 0.01 2.07 860 0.02 1.04 880 0.04 12.09 868 0.03 13.29
rdata-mt06 6 x 6 47 47 0.00 2.08 47 0.00 2.08 55 0.17 0.00 55 0.17 0.00
rdata-mt10 10 x 10 679 754 0.11 11.08 824 0.21 2.83 802 0.18 24.84 801 0.18 24.93
rdata-la1 10 x 5 570 582 0.02 3.80 590 0.04 2.48 607 0.06 16.04 609 0.07 15.77
rdata-la2 10 x 5 529 544 0.03 3.37 554 0.05 1.60 573 0.08 15.74 567 0.07 16.62
rdata-la3 10 x 5 477 488 0.02 4.13 497 0.04 2.36 518 0.09 16.59 512 0.07 17.55
rdata-la4 10 x 5 502 516 0.03 4.44 528 0.05 2.22 542 0.08 16.10 538 0.07 16.72
rdata-la5 10 x 5 457 466 0.02 3.32 476 0.04 1.24 484 0.06 16.12 480 0.05 16.81
rdata-la6 15 x 5 799 804 0.01 2.78 816 0.02 1.33 832 0.04 14.58 821 0.03 15.71
rdata-la7 15 x 5 749 755 0.01 4.07 767 0.02 2.54 779 0.04 15.05 776 0.04 15.38
rdata-la8 15 x 5 765 770 0.01 3.39 788 0.03 1.13 793 0.04 15.46 790 0.03 15.78
vdata-mt06 6 x 6 47 47 0.00 0.00 47 0.00 0.00 49 0.04 10.91 48 0.02 12.73
vdata-mt10 10 x 10 655 677 0.03 12.42 814 0.14 -5.30 746 0.14 25.40 729 0.11 27.10
vdata-la1 10 x 5 570 577 0.01 3.67 587 0.04 2.00 613 0.08 15.80 609 0.07 16.35
vdata-la2 10 x 5 529 538 0.02 7.08 551 0.06 4.84 565 0.07 16.30 564 0.07 16.44
vdata-la3 10 x 5 477 486 0.02 4.33 497 0.05 2.17 515 0.08 17.86 520 0.09 17.07
vdata-la4 10 x 5 502 511 0.02 4.66 528 0.05 1.49 534 0.06 18.10 531 0.06 18.56
vdata-la5 10 x 5 457 469 0.03 3.10 472 0.05 2.48 485 0.06 17.38 499 0.09 14.99
vdata-la6 15 x 5 799 807 0.01 2.65 814 0.03 1.81 826 0.03 15.80 821 0.03 16.31
vdata-la7 15 x 5 749 755 0.01 3.33 763 0.03 2.30 774 0.03 17.75 773 0.03 17.85
vdata-la8 15 x 5 765 770 0.01 1.91 786 0.02 -0.13 779 0.02 18.17 787 0.03 17.33
ARE(%) 0.02 0.04 0.07 0.06

The bold style of data mean the best results among the compared algorithms

In addition, this table also indicates the
percentage improvement of CS which attainable by
CS-BNG is 25.4 with a vdata mt10 whereas it is 27.1
by CS-ILF with a vdata mt10 for the same benchmark
problems. Furthermore, the average percentage of
relative error (ARE) of the four algorithms (AFSA-
HS, AFSA-VND, CS-BNG, and CS-ILF) for the 30
test instances are 0.02, 0.04, 0.07, and 0.06,
respectively. Although the percentage improvement
of CS-ILF for the original CS algorithm was the best,
AFSA-HS obtained a better solution quality
comparing with the other improvements. According
to the best makespans from Table 2, it can be seen
that the best results obtained by AFSA-HS are equal
or better than that of other algorithms when dealing
with almost all of the 30 Hurink data instances. Our
AFSA-HS outperforms AFSA-VND in 27 out of the
30 Hurink data instances. Also it outperforms CS-
BNG and CS-ILF in 29 out of the 30 Hurink data
instances. Table 3 produces the iterations number of
the proposed AFSA-HS and other compared

algorithms. To such instances, from tables 1 and 3, it
can be seen that our AFSA-HS obtains the ideal
makespans (55, 609, 503, 833, 47, and 47) with 2,
101, 223, 45, 242, and 12 iterations respectively. The
basic AFSA obtains the ideal makespans (55 and 47)
with 8 and 63 iterations. Though in tables 2 and 3, the
AFSA-VND can obtain the ideal makespans (55, 47,
and 47), however, it needs as many as 6, 403, and 30
iterations respectively. The CS-BNG and CS-ILF
only obtain the ideal makespan (55) and they need 39
and 69 iterations. Therefore, it is concluded that our
AFSA-HS has more powerful optimizing ability in
dealing with the flexible job shop scheduling
problem. In terms of the speed, 80% of the results
obtained from the benchmark instances by the
AFSA-VND are faster than that of the original
AFSA. Whereas 60% of the results obtained from the
benchmark instances by the AFSA-HS are faster than
the original AFSA. Although AFSA-HS outperform
the AFSA-VND in terms of the solution quality,
approximately 20% of the results obtained from the

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2295

benchmark instances by AFSA-HS are slower
compared with AFSA-VND. This result is attributed
to slightly increasing in computational time.

Table 3: Comparison Of Iterations Number Of AFSA, AFSA-HS, AFSA-VND, CS, CS-BNG, And CS-ILF On Hurink
Data Sets

Instances
Size

n x m
AFSA

iterations no.
AFSA-HS

iterations no.
AFSA-VND
iterations no.

CS iterations
no.

CS-BNG
iterations no.

CS-ILF
iterations no.

edata-mt06 6 x 6 8 2 6 444 39 69
edata-mt10 10 x 10 409 416 528 452 718 466
edata-la1 10 x 5 445 101 238 475 352 369
edata-la2 10 x 5 472 187 303 540 316 293
edata-la3 10 x 5 442 577 568 507 399 477
edata-la4 10 x 5 644 48 627 584 432 433
edata-la5 10 x 5 450 223 403 653 370 199
edata-la6 15 x 5 569 45 217 498 519 460
edata-la7 15 x 5 667 191 528 546 674 490
edata-la8 15 x 5 556 433 217 488 576 550

rdata-mt06 6 x 6 351 242 403 482 136 406
rdata-mt10 10 x 10 548 825 515 569 726 792
rdata-la1 10 x 5 620 696 368 676 532 437
rdata-la2 10 x 5 694 618 571 528 498 638
rdata-la3 10 x 5 509 468 497 503 527 615
rdata-la4 10 x 5 595 160 574 397 538 596
rdata-la5 10 x 5 862 175 386 387 577 651
rdata-la6 15 x 5 489 177 379 591 393 601
rdata-la7 15 x 5 652 728 632 458 440 692
rdata-la8 15 x 5 566 723 513 595 402 482

vdata-mt06 6 x 6 63 12 30 449 86 132
vdata-mt10 10 x 10 760 809 735 648 713 678
vdata-la1 10 x 5 637 358 551 425 497 643
vdata-la2 10 x 5 53 198 61 510 656 581
vdata-la3 10 x 5 536 902 777 468 586 450
vdata-la4 10 x 5 610 680 377 412 529 577
vdata-la5 10 x 5 595 81 454 540 592 363
vdata-la6 15 x 5 633 472 859 425 769 650
vdata-la7 15 x 5 451 583 349 692 606 681
vdata-la8 15 x 5 640 914 244 479 650 520

The essential difference of the AFSA-HS, AFSA-
VND, CS-BNG and CS-ILF is in the selection
procedure. This difference in selection method would
be reflected in the quality of solutions. AFSA-HS is
different from that of AFSA-VND, CS-BNG, and
CS-ILF in that it needs fewer parameters and can be
executed easily. In order to determine the statistical
differences between the AFSA-HS and the compared
algorithms, the Friedman test is conducted. The
results are presented in Table 4. It can be seen from
the Friedman test results that the differences among
the four algorithms are statistically relevant with 97%
certainty. The AFSA-HS obtains the best overall
rank. The proposed algorithm has outperformed
almost all the benchmark instances. Therefore, it is
concluded from the computational results that the
proposed AFSA-HS provides better performance
than those testified by other algorithms.

Table 4: Friedman Test Of Different Algorithms

Algorithm Rank 1-p value 𝝌𝟐 Diff.?
AFSA-HS 1.08

0.97 69.31 Yes
AFSA-VND 2.15

CS-BNG 3.67
CS-ILF 3.10

7. CONCLUSIONS AND FUTURE WORKS

In this paper, the proposed AFSA-HS algorithm
is constructed to be a good problem-solving
technique for scheduling problem with the criterion
to minimize the makespan. In order to improve the
exploration of the original AFSA algorithm, the
harmony search (HS) is exploited in AFSA-HS. It is
based on the new improvised harmony from results
obtained by AFSA. Hence AFSA-HS provides more
intensification than the original AFSA. In this paper,

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2296

we aim to implement an efficient algorithm which
can be easily reconfigured for embedded systems
capable of making real-time decisions according to
the state of resources and any unplanned or
unforeseen events. Harmony search has a good
diversity. Furthermore its integration with the
artificial fish swarm algorithm results in an improved
solution diversity of artificial fish swarm algorithm.
Although solution diversity has increased, the
computational time has increased slightly too. In
addition, the proposed algorithm includes the
parameters of both artificial fish swarm algorithm
and harmony search algorithm resulting in a little
increment in computational time. Here 30 benchmark
problems are taken into consideration to assess the
performance process in the FJSP. The computational
results and comparisons prove that the proposed
AFSA-HS outperforms several existing algorithms
and it is effective for FJSP.

This study can be extended in future to handle
more complex FJSP with multi-objective functions.
In addition to the maximum completion time (Cmax)
that is used to measure the performance of AFSA-HS
algorithm. Another multi-objective functions such as
the workload of the critical machine, the total
workload of all machines, Tardiness time, and Flow
time could be used for the same purpose. The
proposed algorithm could be applied to other
optimization problems. One can consider applying
AFSA with its improvement to solve the FJSP in case
of the occurrence of different disruptions such as
machines breakdown or raw materials shortages or
others. The first population plays an important role in
solution diversity of artificial fish swarm algorithm.
We suggest a method for generating the initial
population with a high level of quality to ensure good
randomization and high diversity. This leads to reach
the optimal solution in less time.

REFERENCES

[1] J. Tang, G. Zhang, B. Lin and B. Zhang, "A
hybrid algorithm for flexible job-shop
scheduling problem," Procedia Engineering,
vol. 15, pp. 3678-3683, 2011.

[2] P.-J. Lai and H.-C. Wu, "Using heuristic
algorithms to solve the scheduling problems
with job-dependent and machine-dependent
learning effects," Journal of Intelligent
Manufacturing, vol. 26, no. 4, pp. 691-701,
2015.

[3] K.-Z. Gao, P. N. Suganthan, Q.-K. Pan, T. J.
Chua, T. X. Cai and C.-S. Chong, "Discrete
harmony search algorithm for flexible job
shop scheduling problem with multiple

objectives," Journal of Intelligent
Manufacturing, vol. 27, no. 2, pp. 363-374,
2016.

[4] M. Gen and L. Lin, "Multiobjective
evolutionary algorithm for manufacturing
scheduling problems: state-of-the-art survey,"
Journal of Intelligent Manufacturing, vol. 25,
no. 5, pp. 849-866, 2014.

[5] A. Miguel, F. P{\'e}rez, M. Fernanda and P.
Raupp, "A Newton-based heuristic algorithm
for multi-objective flexible job-shop
scheduling problem," Journal of Intelligent
Manufacturing, vol. 27, no. 2, p. 409, 2016.

[6] R. Azizi, "Empirical study of artificial fish
swarm algorithm," arXiv preprint
arXiv:1405.4138, 2014.

[7] D. Manjarres, I. Landa-Torres, S. Gil-Lopez,
J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz and
Z. W. Geem, "A survey on applications of the
harmony search algorithm," Engineering
Applications of Artificial Intelligence, vol. 26,
no. 8, pp. 1818-1831, 2013.

[8] Z. W. Geem, J. H. Kim and G. Loganathan, "A
new heuristic optimization algorithm:
harmony search," simulation, vol. 76, no. 2,
pp. 60-68, 2001.

[9] Z. W. Geem, K. S. Lee and Y. Park,
"Application of harmony search to vehicle
routing," American Journal of Applied
Sciences, vol. 2, no. 12, pp. 1552-1557, 2005.

[10] Z. W. Geem and C.-L. Tseng, "Engineering
Applications of Harmony Search.," in GECCO
Late Breaking Papers, 2002.

[11] Z. W. Geem, "New methodology, harmony
search and its robustness," Late-Breaking
Paper of Genetic and Evolutionary
Computation Confrence 2002, New York, NY,
2002.

[12] Z. W. Geem, "Particle-swarm harmony search
for water network design," Engineering
Optimization, vol. 41, no. 4, pp. 297-311,
2009.

[13] M. A. Al-Betar and A. T. Khader, "A harmony
search algorithm for university course
timetabling," Annals of Operations Research,
vol. 194, no. 1, pp. 3-31, 2012.

[14] L. Wang, Q.-K. Pan and M. F. Tasgetiren, "A
hybrid harmony search algorithm for the
blocking permutation flow shop scheduling
problem," Computers \& Industrial
Engineering, vol. 61, no. 1, pp. 76-83, 2011.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2297

[15] G. Hongwei and S. Liang, "Intelligent
scheduling in flexible job shop environments
based on artificial fish swarm algorithm with
estimation of distribution," in Evolutionary
Computation (CEC), 2016 IEEE Congress on,
2016.

[16] H. Ge, L. Sun, X. Chen and Y. Liang, "An
Efficient Artificial Fish Swarm Model with
Estimation of Distribution for Flexible Job
Shop Scheduling," International Journal of
Computational Intelligence Systems, vol. 9,
no. 5, pp. 917-931, 2016.

[17] M. R. Singh and S. S. Mahapatra, "A quantum
behaved particle swarm optimization for
flexible job shop scheduling," Computers \&
Industrial Engineering, vol. 93, pp. 36-44,
2016.

[18] L. ASADZADEH, "SOLVING THE JOB
SHOP SCHEDULING PROBLEM WITH A
PARALLEL AND AGENT-BASED LOCAL
SEARCH GENETIC ALGORITHM.,"
Journal of Theoretical \& Applied Information
Technology, vol. 62, no. 2, 2014.

[19] A. T. S. Al-Obaidi and S. A. Hussein, "Two
Improved Cuckoo Search Algorithm to Solve
Flexible Job-Shop Scheduling Problem,"
International Journal on Perceptive and
Cognitive Computing, vol. 2, no. 2, 2016.

[20] M. R. Singh, S. Mahapatra and R. Mishra,
"Robust scheduling for flexible job shop
problems with random machine breakdowns
using a quantum behaved particle swarm
optimisation," International Journal of
Services and Operations Management, vol.
20, no. 1, pp. 1-20, 2014.

[21] A. T. S. Alobaidi and S. A. Hussein, "An
improved Artificial Fish Swarm Algorithm to
solve flexible job shop," in New Trends in
Information \& Communications Technology
Applications (NTICT), 2017 Annual
Conference on, 2017.

[22] W. Teekeng, A. Thammano, P. Unkaw and J.
Kiatwuthiamorn, "A new algorithm for
flexible job-shop scheduling problem based on
particle swarm optimization," Artificial Life
and Robotics, vol. 21, no. 1, pp. 18-23, 2016.

[23] A. Muthiah, A. Rajkumar and R. Rajkumar,
"Hybridization of Artificial Bee Colony
algorithm with Particle Swarm Optimization
algorithm for flexible Job Shop Scheduling,"
in Energy Efficient Technologies for
Sustainability (ICEETS), 2016 International
Conference on, 2016.

[24] P. Brandimarte, "Routing and scheduling in a
flexible job shop by tabu search," Annals of
Operations research, vol. 41, no. 3, pp. 157-
183, 1993.

[25] Z. Li, H. Zhang, J. Xu and Q. Zhai,
"Recognition and localization of harmful
acoustic signals in wireless sensor network
based on artificial fish swarm algorithm,"
Journal of Theoretical and Applied
Information Technology, vol. 49, no. 1, 2013.

[26] J. H. Kim, Z. W. Geem and E. S. Kim,
"Parameter estimation of the nonlinear
Muskingum model using harmony search,"
JAWRA Journal of the American Water
Resources Association, vol. 37, no. 5, pp.
1131-1138, 2001.

[27] D. Behnke and M. J. Geiger, "Test instances
for the flexible job shop scheduling problem
with work centers," 2012.

[28] J. Hurink, B. Jurisch and M. Thole, "Tabu
search for the job-shop scheduling problem
with multi-purpose machines," Operations-
Research-Spektrum, vol. 15, no. 4, pp. 205-
215, 1994.

