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ABSTRACT 

Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is 
considered as a very complex to control. Hence generating a control system for this problem domain is 
difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to 
the sequencing one which allows the operations to be processed on any machine among a set of available 
machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for 
solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results 
obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best 
solution. When it is the better one, it replaces with the artificial fish swarm solution from which this solution 
was improvised. Meanwhile the best improvised solutions are carried over to the Harmony Memory. The 
objective is to minimize a total completion time (makespan) and to make the proposed approach as a portion 
of the expert and the intelligent scheduling system for remanufacturing decision support. Harmony search 
algorithm has demonstrated to be efficient, simple and strong optimization algorithm. The ability of 
exploration in any optimization algorithm is one of the key points. The obtained optimization results show 
that the proposed algorithm provides better exploitation ability and enjoys fast convergence to the optimum 
solution. As well, comparisons with the original artificial fish swarm algorithm demonstrate improved 
efficiency. 

Keywords: Artificial Fish Swarm Algorithm; Harmony Search; Makespan; Flexible Job-Shop Scheduling 
Problem.

1.  INTRODUCTION 

Scheduling is a process of decision making and 
an important tool in both the manufacturing and 
service industries. It deals with the distribution of 
operations on machines (i.e., the operations sequence 
on machines) in a way that performance goal which 
called makespan can be minimized. Scheduling of 
activities should be efficient enough to use the 
available resources in an effective manner. To 
address these issues, shop scheduling has motivated 
the researchers in both academia and industry. A 
variety of scheduling problems have been 
acknowledged from real-world manufacturing 
environments. 

In this paper, our interesting is in the flexible job 
shop scheduling problem (FJSP) which is a 
generalization of the conventional job shop problem. 
Each operation can be performed by a given machine 
that is selected from a limited subset of candidate 

machines. The FJSP is more sophisticated and 
complex than the traditional JSP since it appends a 
new decision level to the sequencing one, i.e., the 
machine assignment that involves the selection of 
one machine among the available ones for each 
operation. The target is to find an allocation for each 
operation and to define the sequence of operations on 
each machine to minimize the maximum competition 
time called the makespan [1]. 

For its robustly NP-hard nature, many effective 
heuristics and meta-heuristics methods are improved 
and developed to get nearby optimal solutions which 
satisfy the qualifications and minimize or maximize 
the objective function ( [1]; [2]; [3]; [4]; [5] ). Among 
these methods, we have Artificial Fish Swarm 
Algorithm [6] Harmony Search Algorithm [7].  

This paper investigates an Artificial Fish Swarm 
Algorithm with Harmony Search (AFSA-HS) for 
Flexible Job Shop Scheduling problem (FJSP). Most 
species of animals show social behaviors. In some 
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species, this is the top member of the group which 
leads all members of that group. For example, this 
behavior pattern is very clear in lions, monkeys, and 
deer. However, there are other classes of animals 
which live together in groups but they don’t have a 
leader. In this type of animals, each member has a 
self-organized behavior which enables it to move 
around its environment and response to its natural 
needs with no need to leaders like birds, fishes and 
sheep drives. This type of animals has no knowledge 
about their group and the environment. Instead, 
through exchanging data with their adjacent members 
they can move in the environment. This simple 
interaction among particles makes group behavior 
more sophisticated as if we are looking for a particle 
in a wide environment. 

Artificial fish-swarm algorithm (AFSA) is a 
relatively modern addition to the scope of natural 
computing. It has elements inspired by the social 
behaviors of naturalist swarms and linked with 
evolutionary computation. AFSA has found as an 
application widespread in complex optimization 
domains, and presently a prime research topic, 
offering an alternative to the more established 
evolutionary computation techniques that may be 
applied in many of the same domains. 

The harmony search algorithm (HS) [8] is one of 
the population-based meta-heuristics that emulates 
the music improvisation process by musicians. In 
other words, finding a relation between pitches to 
attain a better state of harmony in music and 
searching for optimality in optimization process 
utilizing HS is much alike. This comprehensible 
nature of HS and its simplicity have led to its 
application in many optimization problems including 
the traveling salesperson problem [8], vehicle routing 
[9], pipe capacity design in water supply networks 
[10] [11], water network design [12], educational 
timetabling [13], and shop scheduling [14]. 

In this paper, we proposed an algorithm 
combining AFSA with HS to solve the FJSP. AFSA 
allows an extensive search for the solution space 
while the HS algorithm is employed to reschedule the 
results obtained from AFSA based on the new 
improvised harmony, which will enhance the 
convergence speed. The objective considered in this 
paper is to minimize maximal completion time. 

The remainder of the paper is organized as 
follows. An overview of relevant literature is 
discussed in section 2. The formulation and notation 
of FJSP are introduced in Section 3. Traditional 
AFSA and brief standard HS algorithm are described 
in section 4. In Section 5, the proposed algorithm is 
presented to solve the FJSP. The computational 
results and its comparison with other algorithms are 

shown in section 6. Finally, section 7 provides 
conclusions and future works.  

2.  RELATED WORKS 

AFSA is one of the preferable methods of 
optimization among all the swarm intelligence 
algorithms. This method is inspired by the 
cooperative movement of the fish and their diverse 
social behaviors, where it is considered as a parallel 
and random search optimization algorithm based on 
simulating fish’s behaviors in the water.  

Hongwei and Liang [15] proposed an effective 
artificial fish swarm algorithm with estimation of 
distribution (AFSA-ED) for obtaining intelligent 
scheduling strategies. They proposed the pre-
principle and post-principle arranging mechanism 
and an integrated initialization algorithm for 
enhancing the diversity and modified preying 
behavior with estimation of distribution and embed 
attracting behavior to the algorithm for improving the 
global exploration of the algorithm. Besides, a public 
factor based critical path search strategy is presented 
to enhance the local exploitation ability. 

Ge, et al. [16] proposed an efficient artificial fish-
swarm algorithm with estimation of distribution to 
solve the flexible job shop scheduling problem with 
the criterion to minimize the makespan. Considering 
the interaction of two sub problems, they proposed 
the pre-principle and post-principle arranging 
mechanism to adjust the machine assignment and the 
operation sequence with different orders. For 
improving the global exploration of the algorithm, 
they modified preying behavior with estimation of 
distribution and embed attracting behavior to the 
algorithm. The critical path based local search was 
used to balance the exploration and exploitation. 

Singh and Mahapatra [17] presented an efficient 
quantum particle swarm optimization to find near-
optimal schedules. The switching operator used in the 
genetic algorithm is included in QPSO to obviate 
premature convergence and ameliorate the solution 
diversity. Furthermore, solution diversity is 
improved during the use of chaotic numbers (Logistic 
map) in exchange for random numbers. Utilizing 
chaotic number in the work provides solution 
diversity and minifies computational burden. 

ASADZADEH [18] presented a parallel and 
agent-based local search genetic algorithm for 
solving the job shop scheduling problem. Various 
agents each with special behaviors is developed to 
implement the parallel local search genetic algorithm 
contained in a multi agent system. They parallelize 
the genetic algorithm using the island model where 
the population is partitioned into small 
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subpopulations and migration can happen between 
neighbor subpopulation. 

Al-Obaidi and Hussein [19] presented two 
improved CS algorithms. In the first improvement, 
the division of the generating solutions instead of the 
deleted ones speeds up the convergence rate and 
maintains a good amount of diversification. Because 
Levy Fight gives the effectiveness of CS algorithm, 
it proposed in the second improvement, to repeat it 
multiple times in an acceptable ratio (IR). From the 
experiments, they found (0.2) of the iterated Levy 
flight is a suitable ratio for obtaining feasible 
solutions while increasing this ratio has a time 
consuming for finding better solutions. 

Singh, et al. [20] proposed multiple objective 
frameworks based on the quantum particle-swarm 
optimization (QPSO) to create the predictive 
schedules which can optimize the makespan and the 
robust measures together at the same time. The 
results denote that the proposed QPSO algorithm is 
widely effective in minimizing the makespan in the 
event which uncertainty is encountered in the terms 
of stochastic machine breakdown. An exhaustive 
empirical study is lead up to study the influence of 
various proposed robustness measures on the 
produced schedules using benchmark problems. 

Alobaidi and Hussein [21] presented an 
improvement to AFSA algorithm based on VND 
local search for solving the Flexible Job Shop 
Scheduling Problem (FJSSP). The Variable 
Neighborhood Descent (VND) strategy is performed 
on AFSA by different neighborhood structures to 
improve and upgrade the performance of the original 
AFSA. The VND local search used in AFSA-VND 
provides the algorithms more intensification and 
exploitation than original AFSA. 

In Teekeng, et al. [22], EPSO was proposed to 
solve flexible job shop scheduling problem (FJSP) 
based on particle-swarm optimization (PSO). EPSO 
comprises two groups of features for broadening the 
solution space of FJSP and obviate precocious 
convergence to a local optimum. These two groups 
are as follows: (1) particle life cycle which consists 
of four features: (i) courting call—increasing number 
of more efficient offspring (the new solutions), (ii) 
egg-laying stimulation— increasing number of 
offspring from best parents (current solutions), (iii) 
bi-parental reproduction—increasing diversity of the 
pursue generation (iteration) of solutions, and (iv) 
population turnover—succeeding the population 
(current group of all solutions) in the previous 
generation by a population in a new generation which 
is as able but is much diverse than the previous one; 
and (2) discrete position update mechanism—
moving particles (solutions) at the flight leader (best 

solution), namely, interchanging several integers in 
each solution with these ones in both the best solution 
and itself, employing similar swarming strategy as 
the update procedure of the continuous PSO. 

Muthiah, et al. [23] proposed a hybridization 
methodology of the Particle-Swarm Optimization 
(PSO) and Artificial Bee Colony (ABC). The 
optimization techniques reduce the time of the 
makespan of the shops. In the ABC technicality, the 
scout bee operation depending on the PSO 
technicality updates the process velocity and position 
of particles. The Hybrid Algorithm (HA) is elegantly 
employed to significantly scale down the makespan 
of the job scheduling function to the least possible. 
On a close examination and contrast of the outcomes 
with those of ABC, it is unequivocally established 
that ABC algorithm is competent to achieve amazing 
outcomes. The fascinating results substantiate the 
fact the ground-breaking Hybrid algorithm (HA), 
Particle swarm optimization (PSO) and Artificial Bee 
Colony Optimization (ABC) have come out with 
flying colors by ushering the least make-span interval 
for all the standard issues addressed. 

Finally, and as it is adduced in all the formerly 
cited studies, different swarm intelligent and meta-
heuristics methods are applied to solve the FJSP 
problem. The challenge is always to have the suitable 
approach capable for better solving this problem. In 
the present work, we propose artificial fish swarm 
algorithm (AFSA) combined with harmony search 
approach to find better performance than other 
existing swarm intelligence and meta-heuristics in 
terms of solution quality. 

3.  FLEXIBLE JOB SHOP SCHEDULING 
PROBLEM 

The flexible job-shop scheduling problem (FJSP) 
is a popularization and extension of the traditional 
job-shop scheduling problem (JSP) in which — prior 
to the sequencing of operations — an assignment of 
operations to machines is necessary. A central 
proposition in classic job shop scheduling (JSP) is 
that each operation ought to be processed on one 
predetermined machine. In the fact, the actual 
relevance of recently flexible job shop scheduling 
(FJSP) approaches is lying that in practice, where 
there are more than one machine that is able to 
process a particular manufacturing task. FJSP was 
introduced by Brandimarte [24]. Accordingly 
expanded and generalized the traditional JSP such 
that for each operation there would be more than one 
possible machine assignment. 

Flexible Job-shop Scheduling Problem (FJSP) 
can be described as follows. There is a set of n 
independent jobs J = {J1, J2, …, Jn} to be scheduled. 
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Each job Ji consists of a predetermined sequence of 
operations. Oi,j is the operation j of job Ji. Each job is 
operated by a set of m machines M = {M1, M2, …, 
Mm}. Each machine can process just one operation at 
a time. Each operation can be processed without 
interruption during its performance on one of the set 
of machines. There are no precedence constraints 
among operations of different jobs. We denote with 
Pi,j,k the processing time of operation Oi,j when 
executed on machine Mk . All machines are available 
at time 0. 

4.  ARTIFICIAL FISH SWARM ALGORITHM 
AND HARMONY SEARCH 

In this section, a brief description of AFSA and 
HS algorithm are given. 

4.1. Artificial Fish-Swarm Algorithm (AFSA) 

Artificial fish swarm algorithm (AFSA) is an 
intelligent optimization method based on the 
metaphor of behavior of the fish swarm. The basic 
idea of AFSA is elaborated as follows. Since fishes 
can always find the position full of nutrition by 
themselves or by following the other fishes, thus the 
space with the most survival is usually the place that 
offers the most nutrients. Considering this 
characteristic, artificial fish algorithm optimizes 
systems by simulating all kinds of fish actions and 
combines them with animals’ body model [25]. 
Every artificial fish (AF) in an AFSA framework 
sets its behavior according to its actual state and its 
environmental state, so it makes the use of the best 
position performed by itself and its neighbors. The 
optimization of AFSA is performed by three 
behaviors, i.e., preying behavior, swarming 
behavior, and following behavior. 

Suppose Xi = (X1, X2, …, Xn) is the current 
position of AFi; Yi = f (Xi) is the fitness function at 
position Xi which can represent the objective 
function. Visual is the visible distance of AF; 
try_number is the try times of preying behavior; Step 
is the maximum moving step of AF; δ is the crowd 
factor; nf  is the number of AFs within its visual. For 
AFi , one target position Xt in its visual can be 
described by Eq.(1), Rand() is a function that 
generate random numbers in the interval [0,1]. Then 
the AFi updates its state by using Eq. (2) when the 
updating condition is satisfied. The AFSA are 
summarized by the pseudo code shown in Figure 1 
[21]. 

𝑋௧ =  𝑋 + 𝑣𝑖𝑠𝑢𝑎𝑙 ∙ 𝑅𝑎𝑛𝑑                                       (1) 

𝑋 =  𝑋 +  
𝑋௧ − 𝑋

‖𝑋௧ − 𝑋‖
 ∙ 𝑆𝑡𝑒𝑝 ∙ 𝑅𝑎𝑛𝑑()                (2) 

Artificial Fish Swarm Algorithm 

Input: Initialization of population for the 
problem, visual, try number, crowd factor. 
Initialization of Xi for each artificial fish AFi (i 
=1, 2, …, n)  
Output: Best Solution 
Evaluate each AFi, F(Xi) (i =1, 2, …, n)  
bulletin = min F(Xi)  
while (t <Max Generation) 
      for each AFi do  
         Perform Follow Behavior on Xi(t) and 
compute Xi,follow  
         Perform Swarm Behavior on Xi(t) and 
compute Xi,swarm  
        if F(Xi,follow) < F(Xi,swarm)  
           Xi(t+1) = Xi,follow  
        else  
           Xi(t+1) = Xi,swarm  
        end if  
      end for  
      if F(Xbest_AF) < F(bulletin)  
         bulletin= Xbest_AF  
      end if  
end while  

Figure 1: The AFSA Pseudo Code 

The three behaviors of AF are described as follows: 

a) Preying: Xt random position chosen within 
Xi’s visible region using Eq.(1). If Yt < Yi, it moves a 
step to Xt according to Eq.(2). Otherwise, it chooses 
another Xt position and determines whether it 
satisfies the requirement Yt < Yi. If it is still not 
satisfied after try_number times, AFi chooses a 
random position in its visual region and moves a step 
towards this direction. 

b) Swarming: Let Xc is the center position in 
the visible region. If the center has more food and 
low crowd degree as indicated by Yc ∙ nf  < Yi ∙ δ, then 
AFi moves a step towards Xc. Otherwise, AFi 
executes default preying behavior. 

c) Following: Suppose Xb is the best-found 
position with high food consistence and low crowd 
degree. Xb position is in the visible region of Xi 
position if the position Xb has high food consistence 
and low crowd degree as indicated by Yb ∙ nf  < Yi ∙ 
δ, then AFi moves a step towards Xb. Otherwise, AFi 
executes default preying behavior. 
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4.2. Harmony Search Algorithm 

HS is a population-based meta-heuristic 
algorithm, developed in an analogy with musical 
improvisation. In music performance, each music 
player improvises one note at a time. All these 
musical notes are combined together to form a 
harmony, evaluated by aesthetic standards and 
improved through practice after practice. In 
optimization, every variable is assigned a value at a 
time. All these values are combined together to form 
a solution vector, evaluated by the objective function 
and improved iteration by iteration. Due to the 
rhythm and pitch of each instrument cannot be 
instantly tuned, perfect harmony is not achieved at 
first. However, continual practice to enhance the 
harmony enable the musicians to memorize the 
specific rhythm and pitch of each instrument, which 
lead to “good harmony”. These collections of “good 
harmony” are memorized and the unacceptable 
collections are ignored as superior collections are 
found. The updating process of the harmony 
collections continues till the best harmony is 
obtained. HS performs the process of harmony 
enhancement and the “good harmony” collections 
are saved to a solution space called harmony 
memory (HM), which is HS unique feature 
compared to other evolutionary optimization 
algorithms. 

HS algorithm contains a solution storage 
function called HM that necessitates the definition of 
two parameters: HM considering rate (HMCR) and 
pitch-adjusting rate (PAR). For more details on HS, 
please refer to [8] [26]. The major steps in the 
structure of HS are as follows: 

S1: Initialize the algorithm parameters. 
S2: Initialize the harmony memory (HM). 
S3: Improvise a new solution from the HM. 
S4: Update the HM. 
S5: Repeat S3 and S4 till the stopping criterion is 
satisfied. 

5.  PROPOSED AFSA-HS FOR FJSP 

A. Representation 

In AFSA-HS, each AF represents a feasible 
solution to the problem. Each AF is expressed by two 
vectors: machine assignment vector and operation 
sequence vector, which corresponds to the two sub 
problems of the FJSP. The machine assignment 
vector is represented by a vector of N integer values 
which are the total number of operations. Each 
element of the vector denotes the machine selection 

of each operation and a value is which the index of 
the array of alternative machine set. The operation 
sequence vector is an un-partitioned permutation 
with ni repetitions of job Ji (i = 1,2, ∙∙∙, n). The length 
of operation sequence vector equals to N. The index i 
of job Ji occurs ni times in the vector, and the k-th 
occurrence of a job number refers to the k-th 
operation in the technological sequence of this job. 
For the problem in Figure 2, a representation: 

 
operation sequence :  3   1   4   1   3   1   3   4  2   2   4   3 

 
 
 
1st op of job 1         2nd op of job 1         3rd op of job 1 
 
 
machine assignment:1   4   3   1   1   5   2   4   3   2   3   1 
 
 
 
no. machine 4       no. machine 1       no. machine 5 
 

Figure 2: AF Representation Scheme 

B. An Improved AFSA Based on Harmony 
Search algorithm 

In this paper, we have proposed an improvement 
of the original AFSA based on Harmony Memory 
aiming to enhance the performance of AFSA. Also, 
we use the HS algorithm with new harmony 
improvising technique as a strategy for global search 
in the proposed algorithm without requiring to the HS 
parameters (PAR and HMCR). Hence we test HS 
algorithm with AFSA algorithm for solving flexible 
job shop scheduling problem. This improvising of 
new harmony is considered as the key vector for 
providing a good exploration to the entire search 
space. In the AFSA-HS, the conception of Visual 
represent the maximum number of solution’s 
elements that exchange its location in the solution 
vectors. Hamming distance is used to compute the 
distance between the two solutions (Xi and Xj) which 
is the number of solution’s elements that have a 
different value at corresponding positions. In the 
discrete space the forward step of AF will be taking 
the same solution (position) that is evaluated as a next 
better solution for each AF. This process represents 
the AF movement. The pseudo code of the proposed 
algorithm (AFSA-HS) is shown in Figure 3. 

The HS in AFSA-HS is applied on the updated 
AFs obtained in each iteration which are saved in 
HM. Then they are taken with the global best solution 
as inputs for more intensification around the best 
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solution area. The pseudo code of Harmony search is 
shown in Figure 4. 

AFSA-HS Algorithm 

Input: Initialization of population for the 
problem, visual, try number, crowd factor. 
Initialization of Xi for each artificial fish AFi (i 
=1, 2, …, n)  
Output: Best Solution 
Evaluate each AFi, F(Xi) (i =1, 2, …, n)  
bulletin = min F(Xi)  
while (t <Max_Generation) 
      for each AFi do  
         Perform Follow Behavior on Xi(t) and 
compute Xi,follow  
         Perform Swarm Behavior on Xi(t) and 
compute Xi,swarm  
        if F(Xi,follow) < F(Xi,swarm)  
           Xi(t+1) = Xi,follow  
        else  
           Xi(t+1) = Xi,swarm  
        end if  
      end for  
      Find Gbest_AF which has the best F(Xi (t+1)) (i 
=1, 2, …, n) 
      HM= updated AFs obtained in tth generation 
      Perform HS Algorithm on Gbest_AF and 
compute Gbest_HM 

      if F(Gbest_HM) < F(Gbest_AF) 
         Gbest_AF = Gbest_HM 
      end if  
      if F(Gbest_AF) < F(bulletin) 
         bulletin= Gbest_AF 
      end if  
end while 

Figure 3: Pseudo Code Of The Proposed AFSA-HS 
Algorithm For FJSP 

In HS, the available members in the memory are 
used to construct new harmony at each generation. 
Due to this reason, there is no need for an extra 
memory where the population members 
corresponding to the earlier generations are stored. A 
new solution vector is generated which is computed 
using the AFs in the memory by making some 
swapping among the solution elements of the ith AF 
randomly. The distance between new harmony and 
ith AF is less or equal to Visual. Then the global best 
solution is compared to the new improvised vector. If 
the new vector is better than global best solution, the 
algorithm will progress to the next step of replacing 
the ith solution stored in the HM with the new vector. 

Otherwise the ith solution is kept in HM. Hence 
another new vector is generated from another AFi+1 
(i+1th member) stored in the HM and so on for all 
AFs stored in HM. After the search process is 
completed by all employed AFs in HM, we compare 
the global best solution to the global best solution 
stored in HM. Then the better one is recorded in 
bulletin board. Since this process has different 
improvising vectors, it maintains some diversity 
within the search and gives the proposed AFSA-HS 
algorithm more exploitation around global best 
solution. Also an enhancing in speed of the 
convergence rate is achieved. 

Harmony Search Algorithm 

Input: Current best AF Solution Gbest_AF. 
Set AF index i = 1 
Output: Gbest_HM  /* Global best solution in 
Harmony Memory */ 
while stopping criterion is not satisfied  /* each 
AF in HM */ 
            /* Generate a new solution */ 
                    Pick the ith value from the solutions 
in HM 
                        /* New solution generated */ 
                        Pertub the value picked    
            if new solution better than the GBest_AFSA 

solution (in terms of fitness) 
                 Replace the ith solution in HM with 
new solution 
            end if 
            Increment the AF index i = i + 1 
end while 
Find Gbest_HM which has the best F(Xi (t+1)) in HM 

Figure 4: The HS Algorithm Pseudo Code 

6.  EXPERIMENTAL RESULTS AND 
DISCUSSION 

To evaluate the performance of the AFSA-HS for 
FJSP, we consider three sets of well-known 
benchmark with 30 instances from Hurink, et al. [27] 
[28]. Hurink data sets are three: edata, rdata, and 
vdata. The jobs number ranges in each set from 6 to 
30, machines number ranges between 4 and 15. 
While the flexibility of each operation in the three 
data sets edata, rdata, and vdata are 1.15, 2 and 2-7.5 
respectively. In the original AFSA algorithm, the 
moving step of the Artificial Fish is done in 
continuous state space. Therefore, we adapt the 
AFSA and AFSA-HS algorithms to be suitable for 
searching in discrete state space of the problem by 
some neighborhood strategies. 
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The AFSA and AFSA-HS are coded and 
implemented in MATLAB R2013a language on an 
Intel Core i5 2.3 GHz. personal computer with 4GB 
of RAM. The AFSA and AFSA-HS are applied to the 
same instances of FJSP with the same value of 
parameters. The algorithms AFSA and AFSA-HS run 
5 independent times for each instance of edata, rdata, 
and vdata. In order to obtain meaningful results we 
calculated the average of the 5 test runs. The 
measured performance is close to the lower bound of 
the benchmark. To illustrate the quality of the results 
obtained by the AFSA and AFSA-HS, the relative 
error (𝑅𝐸 ) is introduced. 𝑅𝐸  is calculated by the 
following Eq. (3): 

𝑅𝐸(%) =
𝐴𝑀𝑆 − 𝐿𝐵

𝐿𝐵
× 100                                   (3) 

where 𝐴𝑀𝑆  is the Average makespan for each 
instance obtained by the corresponding algorithms. 
𝐿𝐵 is the best-known solution or the lower bound of 
the benchmark. 

In Table 1 comparisons of makespan obtained by 
AFSA and our proposed AFSA-HS on thirty FJSP 
instances from Hurink data set are introduced. The 1st 
column represents the name of the problem. The 2nd 
column represents the size of the problem. The 3rd 
column points to the lower bound of the benchmark. 
The fourth and sixth columns represent the average 
of makespan resulted from AFSA and AFSA-HS 
respectively. Table 1 shows the best results from our 
proposed algorithm for all 30 test instances of the 
Hurink data sets (edata, rdata, and vdata) compared 
to the best results obtained from the artificial fish-
swarm algorithm (AFSA). Where the compared 
results are either the same or better than the best 
solutions from AFSA or equal to the lower bound. 

Our algorithm is different in its simplicity and it 
is far from complexity and cost. It increases the 
diversity of the solutions by improvising a new 
harmony from each artificial fish searching for a 
perfect state of harmony in terms of fitness. Thus it 
produces a new solution around the existing solution 
quality. The best harmonies will be carried over to the 
harmony memory. Therefore we may get more than 
one new harmony with fitness better than the fitness 
of the global best solution. This led to an 
improvement in the quality of the solution and the 
speed of convergence towards the optimal solution. 

Table 1: The Average Of Makespan Results Of Hurink 
Data Sets By AFSA And AFSA-HS Algorithm 

Instances 
Size 

n x m 
LB 

AFSA AFSA-HS 
AMS AMS 

edata-mt06 6 x 6 55 55 55 

edata-mt10 10 x 10 871 985 912 
edata-la1 10 x 5 609 620 609 
edata-la2 10 x 5 655 691 658 
edata-la3 10 x 5 550 578 564 
edata-la4 10 x 5 568 606 590 
edata-la5 10 x 5 503 518 503 
edata-la6 15 x 5 833 860 833 
edata-la7 15 x 5 762 811 778 
edata-la8 15 x 5 845 869 851 
rdata-mt06 6 x 6 47 48 47 
rdata-mt10 10 x 10 679 848 754 
rdata-la1 10 x 5 570 605 582 
rdata-la2 10 x 5 529 563 544 
rdata-la3 10 x 5 477 509 488 
rdata-la4 10 x 5 502 540 516 
rdata-la5 10 x 5 457 482 466 
rdata-la6 15 x 5 799 827 804 
rdata-la7 15 x 5 749 787 755 
rdata-la8 15 x 5 765 797 770 
vdata-mt06 6 x 6 47 47 47 
vdata-mt10 10 x 10 655 773 677 
vdata-la1 10 x 5 570 599 577 
vdata-la2 10 x 5 529 579 538 
vdata-la3 10 x 5 477 508 486 
vdata-la4 10 x 5 502 536 511 
vdata-la5 10 x 5 457 484 469 
vdata-la6 15 x 5 799 829 807 
vdata-la7 15 x 5 749 781 755 
vdata-la8 15 x 5 765 785 770 

The bold style of data mean the best results among the 
compared algorithms or the ideal makespan 

The comparison between the proposed AFSA-HS 
algorithm and the results obtained by other 
algorithms is expressed in Table 2. In this table, 
comparisons of the average percentage of relative 
error from the lower bound of our proposed AFSA-
HS algorithm to the average percentages of relative 
error of the (CS-BNG, and CS-ILF) [19] and AFSA-
VND [21] algorithms on thirty FJSP instances from 
Hurink data sets are prepared. The fifth, eighth, 
eleventh and fourteenth columns represent the 
relative error. In addition, the sixth, ninth, twelfth, 
and fifteenth columns represent the percentage of 
improvement. The percentage improvement (𝑃𝐼) for 
makespan using AFSA-HS over AFSA is defined as 
follows: 

𝑃𝐼(%) =
𝐴𝑀𝑆ிௌ−𝐴𝑀𝑆ிௌ_ுௌ

𝐴𝑀𝑆ிௌ

× 100              (4) 

Furthermore Table 2 indicates that a maximum of 
percentage improvement attainable by AFSA-HS is 
12.42 with a vdata mt10 whilst it is 4.84 by AFSA-
VND with a vdata la2 for the benchmark problems 
considered in this study.
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Table 2: Comparison Of Percentage Relative Errors And Percentage Improvement Obtained By Using AFSA-HS, 
AFSA-VND, CS-BNG, And CS-ILF On Hurink Data Sets 

Instances 
Size 

n x m 
LB 

AFSA-HS AFSA-VND CS-BNG CS-ILF 
AMS RE(%) PI(%) AMS RE(%) PI(%) AMS RE(%) PI(%) AMS RE(%) PI(%) 

edata-mt06 6 x 6 55 55 0.00 0.00 55 0.00 0.00 55 0.00 1.79 55 0.00 1.79 
edata-mt10 10 x 10 871 912 0.05 7.41 953 0.09 3.25 986 0.13 17.21 979 0.12 17.80 
edata-la1 10 x 5 609 609 0.00 1.77 617 0.01 0.48 636 0.04 12.76 634 0.04 13.03 
edata-la2 10 x 5 655 658 0.00 4.78 686 0.05 0.72 707 0.08 9.71 694 0.06 11.37 
edata-la3 10 x 5 550 564 0.03 2.42 568 0.03 1.73 593 0.08 11.09 588 0.07 11.84 
edata-la4 10 x 5 568 590 0.04 2.64 598 0.05 1.32 620 0.09 12.55 619 0.09 12.69 
edata-la5 10 x 5 503 503 0.00 2.90 511 0.02 1.35 525 0.04 13.22 526 0.05 13.06 
edata-la6 15 x 5 833 833 0.00 3.14 850 0.02 1.16 864 0.04 11.48 861 0.03 11.78 
edata-la7 15 x 5 762 778 0.02 4.07 799 0.05 1.48 818 0.07 14.79 819 0.07 14.69 
edata-la8 15 x 5 845 851 0.01 2.07 860 0.02 1.04 880 0.04 12.09 868 0.03 13.29 
rdata-mt06 6 x 6 47 47 0.00 2.08 47 0.00 2.08 55 0.17 0.00 55 0.17 0.00 
rdata-mt10 10 x 10 679 754 0.11 11.08 824 0.21 2.83 802 0.18 24.84 801 0.18 24.93 
rdata-la1 10 x 5 570 582 0.02 3.80 590 0.04 2.48 607 0.06 16.04 609 0.07 15.77 
rdata-la2 10 x 5 529 544 0.03 3.37 554 0.05 1.60 573 0.08 15.74 567 0.07 16.62 
rdata-la3 10 x 5 477 488 0.02 4.13 497 0.04 2.36 518 0.09 16.59 512 0.07 17.55 
rdata-la4 10 x 5 502 516 0.03 4.44 528 0.05 2.22 542 0.08 16.10 538 0.07 16.72 
rdata-la5 10 x 5 457 466 0.02 3.32 476 0.04 1.24 484 0.06 16.12 480 0.05 16.81 
rdata-la6 15 x 5 799 804 0.01 2.78 816 0.02 1.33 832 0.04 14.58 821 0.03 15.71 
rdata-la7 15 x 5 749 755 0.01 4.07 767 0.02 2.54 779 0.04 15.05 776 0.04 15.38 
rdata-la8 15 x 5 765 770 0.01 3.39 788 0.03 1.13 793 0.04 15.46 790 0.03 15.78 
vdata-mt06 6 x 6 47 47 0.00 0.00 47 0.00 0.00 49 0.04 10.91 48 0.02 12.73 
vdata-mt10 10 x 10 655 677 0.03 12.42 814 0.14 -5.30 746 0.14 25.40 729 0.11 27.10 
vdata-la1 10 x 5 570 577 0.01 3.67 587 0.04 2.00 613 0.08 15.80 609 0.07 16.35 
vdata-la2 10 x 5 529 538 0.02 7.08 551 0.06 4.84 565 0.07 16.30 564 0.07 16.44 
vdata-la3 10 x 5 477 486 0.02 4.33 497 0.05 2.17 515 0.08 17.86 520 0.09 17.07 
vdata-la4 10 x 5 502 511 0.02 4.66 528 0.05 1.49 534 0.06 18.10 531 0.06 18.56 
vdata-la5 10 x 5 457 469 0.03 3.10 472 0.05 2.48 485 0.06 17.38 499 0.09 14.99 
vdata-la6 15 x 5 799 807 0.01 2.65 814 0.03 1.81 826 0.03 15.80 821 0.03 16.31 
vdata-la7 15 x 5 749 755 0.01 3.33 763 0.03 2.30 774 0.03 17.75 773 0.03 17.85 
vdata-la8 15 x 5 765 770 0.01 1.91 786 0.02 -0.13 779 0.02 18.17 787 0.03 17.33 
ARE(%)    0.02   0.04   0.07   0.06  

The bold style of data mean the best results among the compared algorithms

In addition, this table also indicates the 
percentage improvement of CS which attainable by 
CS-BNG is 25.4 with a vdata mt10 whereas it is 27.1 
by CS-ILF with a vdata mt10 for the same benchmark 
problems. Furthermore, the average percentage of 
relative error (ARE) of the four algorithms (AFSA-
HS, AFSA-VND, CS-BNG, and CS-ILF) for the 30 
test instances are 0.02, 0.04, 0.07, and 0.06, 
respectively. Although the percentage improvement 
of CS-ILF for the original CS algorithm was the best, 
AFSA-HS obtained a better solution quality 
comparing with the other improvements. According 
to the best makespans from Table 2, it can be seen 
that the best results obtained by AFSA-HS are equal 
or better than that of other algorithms when dealing 
with almost all of the 30 Hurink data instances. Our 
AFSA-HS outperforms AFSA-VND in 27 out of the 
30 Hurink data instances. Also it outperforms CS-
BNG and CS-ILF in 29 out of the 30 Hurink data 
instances. Table 3 produces the iterations number of 
the proposed AFSA-HS and other compared 

algorithms. To such instances, from tables 1 and 3, it 
can be seen that our AFSA-HS obtains the ideal 
makespans (55, 609, 503, 833, 47, and 47) with 2, 
101, 223, 45, 242, and 12 iterations respectively. The 
basic AFSA obtains the ideal makespans (55 and 47) 
with 8 and 63 iterations. Though in tables 2 and 3, the 
AFSA-VND can obtain the ideal makespans (55, 47, 
and 47), however, it needs as many as 6, 403, and 30 
iterations respectively. The CS-BNG and CS-ILF 
only obtain the ideal makespan (55) and they need 39 
and 69 iterations. Therefore, it is concluded that our 
AFSA-HS has more powerful optimizing ability in 
dealing with the flexible job shop scheduling 
problem. In terms of the speed, 80% of the results 
obtained from the benchmark instances by the 
AFSA-VND are faster than that of the original 
AFSA. Whereas 60% of the results obtained from the 
benchmark instances by the AFSA-HS are faster than 
the original AFSA. Although AFSA-HS outperform 
the AFSA-VND in terms of the solution quality, 
approximately 20% of the results obtained from the 
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benchmark instances by AFSA-HS are slower 
compared with AFSA-VND. This result is attributed 
to slightly increasing in computational time.

Table 3: Comparison Of Iterations Number Of AFSA, AFSA-HS, AFSA-VND, CS, CS-BNG, And CS-ILF On Hurink 
Data Sets 

Instances 
Size 

n x m 
AFSA 

iterations no. 
AFSA-HS 

iterations no. 
AFSA-VND 
iterations no. 

CS iterations 
no. 

CS-BNG 
iterations no. 

CS-ILF 
iterations no. 

edata-mt06 6 x 6 8 2 6 444 39 69 
edata-mt10 10 x 10 409 416 528 452 718 466 
edata-la1 10 x 5 445 101 238 475 352 369 
edata-la2 10 x 5 472 187 303 540 316 293 
edata-la3 10 x 5 442 577 568 507 399 477 
edata-la4 10 x 5 644 48 627 584 432 433 
edata-la5 10 x 5 450 223 403 653 370 199 
edata-la6 15 x 5 569 45 217 498 519 460 
edata-la7 15 x 5 667 191 528 546 674 490 
edata-la8 15 x 5 556 433 217 488 576 550 

rdata-mt06 6 x 6 351 242 403 482 136 406 
rdata-mt10 10 x 10 548 825 515 569 726 792 
rdata-la1 10 x 5 620 696 368 676 532 437 
rdata-la2 10 x 5 694 618 571 528 498 638 
rdata-la3 10 x 5 509 468 497 503 527 615 
rdata-la4 10 x 5 595 160 574 397 538 596 
rdata-la5 10 x 5 862 175 386 387 577 651 
rdata-la6 15 x 5 489 177 379 591 393 601 
rdata-la7 15 x 5 652 728 632 458 440 692 
rdata-la8 15 x 5 566 723 513 595 402 482 

vdata-mt06 6 x 6 63 12 30 449 86 132 
vdata-mt10 10 x 10 760 809 735 648 713 678 
vdata-la1 10 x 5 637 358 551 425 497 643 
vdata-la2 10 x 5 53 198 61 510 656 581 
vdata-la3 10 x 5 536 902 777 468 586 450 
vdata-la4 10 x 5 610 680 377 412 529 577 
vdata-la5 10 x 5 595 81 454 540 592 363 
vdata-la6 15 x 5 633 472 859 425 769 650 
vdata-la7 15 x 5 451 583 349 692 606 681 
vdata-la8 15 x 5 640 914 244 479 650 520 

The essential difference of the AFSA-HS, AFSA-
VND, CS-BNG and CS-ILF is in the selection 
procedure. This difference in selection method would 
be reflected in the quality of solutions. AFSA-HS is 
different from that of AFSA-VND, CS-BNG, and 
CS-ILF in that it needs fewer parameters and can be 
executed easily. In order to determine the statistical 
differences between the AFSA-HS and the compared 
algorithms, the Friedman test is conducted. The 
results are presented in Table 4. It can be seen from 
the Friedman test results that the differences among 
the four algorithms are statistically relevant with 97% 
certainty. The AFSA-HS obtains the best overall 
rank. The proposed algorithm has outperformed 
almost all the benchmark instances. Therefore, it is 
concluded from the computational results that the 
proposed AFSA-HS provides better performance 
than those testified by other algorithms. 

Table 4: Friedman Test Of Different Algorithms 

Algorithm Rank 1-p value 𝝌𝟐 Diff.? 
AFSA-HS 1.08 

0.97 69.31 Yes 
AFSA-VND 2.15 

CS-BNG 3.67 
CS-ILF 3.10 

7.  CONCLUSIONS AND FUTURE WORKS 

In this paper, the proposed AFSA-HS algorithm 
is constructed to be a good problem-solving 
technique for scheduling problem with the criterion 
to minimize the makespan. In order to improve the 
exploration of the original AFSA algorithm, the 
harmony search (HS) is exploited in AFSA-HS. It is 
based on the new improvised harmony from results 
obtained by AFSA. Hence AFSA-HS provides more 
intensification than the original AFSA. In this paper, 
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we aim to implement an efficient algorithm which 
can be easily reconfigured for embedded systems 
capable of making real-time decisions according to 
the state of resources and any unplanned or 
unforeseen events. Harmony search has a good 
diversity. Furthermore its integration with the 
artificial fish swarm algorithm results in an improved 
solution diversity of artificial fish swarm algorithm. 
Although solution diversity has increased, the 
computational time has increased slightly too. In 
addition, the proposed algorithm includes the 
parameters of both artificial fish swarm algorithm 
and harmony search algorithm resulting in a little 
increment in computational time. Here 30 benchmark 
problems are taken into consideration to assess the 
performance process in the FJSP. The computational 
results and comparisons prove that the proposed 
AFSA-HS outperforms several existing algorithms 
and it is effective for FJSP. 

This study can be extended in future to handle 
more complex FJSP with multi-objective functions. 
In addition to the maximum completion time (Cmax) 
that is used to measure the performance of AFSA-HS 
algorithm. Another multi-objective functions such as 
the workload of the critical machine, the total 
workload of all machines, Tardiness time, and Flow 
time could be used for the same purpose. The 
proposed algorithm could be applied to other 
optimization problems. One can consider applying 
AFSA with its improvement to solve the FJSP in case 
of the occurrence of different disruptions such as 
machines breakdown or raw materials shortages or 
others. The first population plays an important role in 
solution diversity of artificial fish swarm algorithm. 
We suggest a method for generating the initial 
population with a high level of quality to ensure good 
randomization and high diversity. This leads to reach 
the optimal solution in less time. 
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