In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
In this paper we introduce the definition of Lie ideal on inverse semiring and we generalize some results of Herstein about Lie structure of an associative rings to inverse semirings.
Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
Let
Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept
Let R be a semiprime ring with center Z(R) and U be a nonzero ideal of R. An additive mappings are called right centralizer if ( ) ( ) and ( ) ( ) holds for all . In the present paper, we introduce the concepts of generalized strong commutativity centralizers preserving and generalized strong cocommutativity preserving centralizers and we prove that R contains a nonzero central ideal if any one of the following conditions holds: (i) ( ) ( ), (ii) [ ( ) ( )] , (iii) [ ( ) ( )] [ ], (iv) ( ) ( ) , (v) ( ) ( ) , (vi) [ ( ) ( )] , (vii) ( ) ( ) ( ), (viii) ( ) ( ) for all .
Let R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.
In this paper, as generalization of second modules we introduce type of modules namely (essentially second modules). A comprehensive study of this class of modules is given, also many results concerned with this type and other related modules presented.
In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.
In this paper, we prove that; Let M be a 2-torsion free semiprime which satisfies the condition for all and α, β . Consider that as an additive mapping such that holds for all and α , then T is a left and right centralizer.