Preferred Language
Articles
/
jih-700
Semiprime Fuzzy Modules
...Show More Authors

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Nearly Primary-2-Absorbing Submodules and other Related Concepts
...Show More Authors

Our aim in this paper is to introduce the notation of nearly primary-2-absorbing submodule as generalization of 2-absorbing submodule where a proper submodule  of an -module  is called nearly primary-2-absorbing submodule if whenever , for , , ,  implies that either  or  or . We got many basic, properties, examples and characterizations of this concept. Furthermore, characterizations of nearly primary-2-absorbing submodules in some classes of modules were inserted. Moreover, the behavior of nearly primary-2-absorbing submodule under -epimorphism was studied.

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-Essential Submodules
...Show More Authors

Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.

View Publication Preview PDF
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
W-Closed Submodule and Related Concepts
...Show More Authors

    Let R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.   

View Publication Preview PDF
Crossref (1)
Crossref