In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.
In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given.
Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.
In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M; In other words, M is a Max– module iff (0) is a *- submodule, where a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly. In this paper, some properties and characterizations of max– modules and *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.
... Show MoreLet R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
The concept of a 2-Absorbing submodule is considered as an essential feature in the field of module theory and has many generalizations. This articale discusses the concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules and their relationship to the 2-Absorbing submodule, Quasi-2-Absorbing submodule, Nearly-2-Absorbing submodule, Pseudo-2-Absorbing submodule, and the rest of the other concepts previously studied. The relationship between them has been studied, explaining that the opposite is not true and that under certain conditions the opposite becomes true. This article aims to study this concept and gives the most important propositions, characterizations, remarks, examples, lemmas, and observations related to it. In the en
... Show MoreThe concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially 2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs
... Show MoreLet R be commutative Ring , and let T be unitary left .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either r tϵ C +soc or s tϵC +soc .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.