Preferred Language
Articles
/
jih-2613
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts
...Show More Authors

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Semi-Prime Submodules and Some Related Concepts
...Show More Authors

    We introduce in this paper the concept of approximaitly semi-prime submodules of unitary left -module  over a commutative ring  with identity as a generalization of a prime submodules and semi-prime submodules, also generalization of quasi-prime submodules and approximaitly prime submodules. Various basic properties of an approximaitly semi-prime submodules are discussed, where a proper submodule  of an -module  is called an approximaitly semi-prime submodule of  , if whenever , where ,  and , implies that . Furthermore the behaviors of approximaitly semi-prime submodule in some classes of modules are studied. On the other hand several characterizations of this concept are

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Prime Submodules and Some Related Concepts
...Show More Authors

In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule  of an -module  is called an approximaitly prime submodule of  (for short app-prime submodule), if when ever , where , , implies that either  or . So, an ideal  of a ring  is called app-prime ideal of  if   is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Weakly Closed Submodules and Related Concepts
...Show More Authors

Let  be a commutative ring with identity, and  be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule  of an -module  is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule  of  with  is a submodule of  such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of  pseudo weakly closed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Quasi-primary Submodules
...Show More Authors

      In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module  over a commutative ring  with identity. This concept is a generalization of prime and primary submodules, where a proper submodule  of an -module  is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either  or , for some . Many basic properties, examples and characterizations of this concept are introduced.

View Publication Preview PDF
Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Quasi-2-Absorbing Submodules and Some Related Concepts
...Show More Authors

Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Nearly Prime Submodules
...Show More Authors

        In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.

View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Quasi-Prime Module
...Show More Authors

  In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
J-Prime submodules and some related concepts
...Show More Authors

Suppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.

Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Quasi-Small Prime Submodules
...Show More Authors

     Let  be a commutative  ring with identity , and  be a unitary (left) R-module. A proper submodule  of  is said to be quasi- small prime submodule  , if whenever   with  and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Prime Submodules
...Show More Authors

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF