The formal integration of the interior spaces in general and the commercial spaces of the watch shops in the large commercial centers in particular is the goal that the designers aim to reach in order for the interior space to become successful in terms of the design idea and its characteristics. Implementation mechanism. One of the reasons for achieving formal integration in the interior spaces of watch shops is the requirements of the design that must be available in these spaces to reach a state of formal integration between the interior and the exterior so that the space becomes fully integrated in all respects. Because of the aforementioned reasons for dealing with the research, through four chapters: The first chapter included the research plan and its problem, which was summarized in the following question: (What are the design requirements that must be available in the interior design? Shop spaces that sell watches as commercial spaces require formal integration)? The importance of the research, its objective, the objective limits, the spatial and temporal limits of the research were also highlighted, and the most important terms mentioned in the research title were identified. As for the second chapter, it included previous studies and the theoretical framework, which included two parts. The first dealt with formal integration into the interior spaces. As for the second, it dealt with the internal commercial spaces in all its details, in addition to the results of the theoretical framework in terms of indicators. As for the third chapter, it was devoted to the research procedures, as the researcher relied on the descriptive approach in analyzing the selected samples and models. The fourth chapter also included the results of the analysis and the conclusions obtained in light of the research objective, recommendations and proposals. and a list of sources and appendices.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Abstract. One of the fibrewise micro-topological space is one in which the topology is decided through a group of fibre bundles, in comparison to the usual case in normal, fibrewise topological space. The micro-topological spaces draw power from their ability to be used in descriptions of a wide range of mathematical objects. These can be used to describe the topology of a manifold or even the topology of a group. Apart from easy manipulation, the fibrewise micro-topological spaces yield various mathematical applications, but the one being mentioned here is the possibility for geometric investigation of space or group structure. In this essay, we shall explain what fibrewise micro-topological spaces are, indicate why they are useful in math
... Show MoreIn this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
The concept of fuzzy orbit open sets under the mapping
The aim of this paper is to introduce and study some of the Fibrewise minimal regular,Fibrewise maximal regular, Fibrewise minimal completely regular, Fibrewise maximal completely regular, Fibrewise minimal normal, Fibrewise maximal normal, Fibrewise minimal functionally normal, and Fibrewise maximal functionally normal. This is done by providing some definitions of the concepts and examples related to them, as well as discussing some properties and mentioning some explanatory diagrams for those concepts.