In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
Venus orbit around the Sun is an ellipse inside the Earth orbit. The elements of Venus orbit and its position are affected by the gravitational force of near planets therefore the elements were determined with Julian date through ten years 2011-2020. The orbital elements used to calculate Venus distance from the Sun, the heliocentric and geocentric equatorial coordinates. From the results the orbit of Venus and its position were described and show the gravity effect of near planets on it. The results get the values and their variation through ten years for the eccentricity, semi-major axis, inclination, longitude of ascending node, argument of perihelion, mean anomaly and distance from the Sun. The variation is very small through 10 year
... Show MoreIn this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw
... Show MoreIn this study used three methods such as Williamson-hall, size-strain Plot, and Halder-Wagner to analysis x-ray diffraction lines to determine the crystallite size and the lattice strain of the nickel oxide nanoparticles and then compare the results of these methods with two other methods. The results were calculated for each of these methods to the crystallite size are (0.42554) nm, (1.04462) nm, and (3.60880) nm, and lattice strain are (0.56603), (1.11978), and (0.64606) respectively were compared with the result of Scherrer method (0.29598) nm,(0.34245),and the Modified Scherrer (0.97497). The difference in calculated results Observed for each of these methods in this study.
In this work, we are concerned with how to find an explicit approximate solution (AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu transform method (STM). In this method, the space-fractional order derivatives are defined in the Caputo idea. The Sumudu method (SM) is established to be reliable and accurate. Three examples are discussed to check the applicability and the simplicity of this method. Finally, the Numerical results are tabulated and displayed graphically whenever possible to make comparisons between the AS and exact solution (ES).
This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
In this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show MoreSeveral attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope
... Show MoreIn this paper, we proposed a modified Hestenes-Stiefel (HS) conjugate
gradient method. This achieves a high order accuracy in approximating the second
order curvature information of the objective function by utilizing the modified
secant condition which is proposed by Babaie-Kafaki [1], also we derive a nonquadratic
conjugate gradient model. The important property of the suggestion
method that is satisfy the descent property and global convergence independent of
the accuracy of the line search. In addition, we prove the global convergence under
some suitable conditions, and we reported the numerical results under these
conditions.
In this paper normal self-injective hyperrings are introduced and studied. Some new relations between this concept and essential hyperideal, dense hyperideal, and divisible hyperring are studied.
Simplifying formulas that are used for calculations and design are the aim of researchers. For present work, the approach to distinguish the flow under sluice gate was conducted in a laboratory. The extensive experimental program was done to collect fifty-four data points for both free and submerged flow conditions. The data included different discharges, gate openings, flow depths at upstream as well as the flow depths represent a tail water and at a contracted section for downstream. The collected data are analyzed according to a problematic that may encounter in the field, to present a more straightforward (but with acceptable accurate) practical features equations and charts. Based on the proposed formulas, five meth
... Show More