Preferred Language
Articles
/
ijs-9533
On Solving Singular Multi Point Boundary Value Problems with Nonlocal Condition

In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach of Morgan-Voyce Polynomial to Solve Three Point Boundary Value Problems

In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Determination of Thermal Conductivity in Heat Equation under Nonlocal Boundary Conditions and Integral as Over specified Condition

In this article, an inverse problem of finding timewise-dependent thermal conductivity has been investigated numerically. Numerical solution of forward (direct) problem has been solved by finite-difference method (FDM). Whilst, the inverse (indirect) problem solved iteratively using Lsqnonlin   routine  from MATLAB. Initial guess for unknown coefficient expressed by explicit relation   based on nonlocal overdetermination conditions and intial input data .The obtained numrical results are presented and discussed in several figures and tables. These results are accurate and stable even in the presense of noisy data.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Existence of Positive Solution for Boundary Value Problems

  This paper studies the existence of  positive solutions for the following boundary value problem :-
 
 y(b) 0 α y(a) - β y(a) 0     bta             f(y) g(t) λy    
 
 
The solution procedure follows using the Fixed point theorem and obtains that this problem has at least one positive solution .Also,it determines (  ) Eigenvalue which would be needed to find the positive solution .

View Publication Preview PDF
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

Crossref
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Initial and Boundary Value Problems

This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Watermark Based on Singular Value Decomposition

Watermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Mar 16 2021
Journal Name
International Journal For Computational Methods In Engineering Science And Mechanics
Scopus (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique

The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique

  The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] .  Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Galerkin-Implicit Methods for Solving Nonlinear Hyperbolic Boundary Value Problem

This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP).  The given BVP is written in its discrete (DI) weak form (WEF), and is proved that  it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS).  In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to  linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results

... Show More
Crossref
View Publication Preview PDF