Preferred Language
Articles
/
ijs-1496
Numerical Solution for Two-Sided Stefan Problem

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for two test examples.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Solution to Recover Time-dependent Coefficient and Free Boundary from Nonlocal and Stefan Type Overdetermination Conditions in Heat Equation

This paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via

... Show More
Scopus (10)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
An Approximate solution for two points oundary value problem corresponding to some optimal control

this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical

View Publication Preview PDF
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Two Machine Flow Shop Scheduling Problem to Minimize the Total Earliness

This paper proposes a new algorithm (F2SE) and algorithm (Alg(n – 1)) for solving the
two-machine flow shop problem with the objective of minimizing total earliness. This
complexity result leads us to use an enumeration solution approach for the algorithm (F2SE)
and (DM) is more effective than algorithm Alg( n – 1) to obtain approximate solution.

View Publication Preview PDF
Publication Date
Tue Mar 14 2023
Journal Name
Iraqi Journal Of Science
On Two Sided -n-Derivations in Prime near – Rings

In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Mon Oct 01 2012
Journal Name
Computers & Mathematics With Applications
Crossref (19)
Crossref
View Publication
Publication Date
Fri Mar 18 2016
Journal Name
International Journal Of Basic And Applied Sciences
Analytic and numerical solution for duffing equations

<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>

Crossref (13)
Crossref
View Publication
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jan 05 2023
Journal Name
Mathematical Theory And Modeling
(Tc) Technique for Finding Optimal Solution To Transportation Problem

Given the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init

... Show More
Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Wang-Ball Polynomials for the Numerical Solution of Singular Ordinary Differential Equations

This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.

Scopus (3)
Scopus Crossref
View Publication Preview PDF