Preferred Language
Articles
/
ijs-7094
2-Prime Modules
...Show More Authors

      In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Commutativity Results for Multiplicative (Generalized) (α,β) Reverse Derivations on Prime Rings
...Show More Authors

Let  be a prime ring,  be a non-zero ideal of  and   be automorphism on. A mapping  is called a multiplicative (generalized)  reverse derivation if  where  is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized)  reverse derivation  satisfying any one of the properties:

 

 

 for all x, y  

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
A Jordan Higher Reverse Left (resp. right) Centralizer on Prime -Rings
...Show More Authors

In this paper,  we introduce the concepts of  higher reverse left (resp.right)   centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of  G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of  M.

View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Generalized Higher Derivations on ΓM-Modules
...Show More Authors

The concepts of generalized higher derivations, Jordan generalized higher derivations, and Jordan generalized triple higher derivations on Γ-ring M into ΓM-modules X are presented. We prove that every Jordan generalized higher derivation of Γ-ring M into 2-torsion free ΓM-module X, such that aαbβc=aβbαc, for all a, b, c M and α,βΓ, is Jordan generalized triple higher derivation of M into X.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Mathematical Forum
Coextending modules
...Show More Authors

Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2012
Journal Name
International Mathematical Forum
Epiform∗ Modules
...Show More Authors

Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.

View Publication
Publication Date
Fri Dec 29 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bounded Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary (left) R- modul e. The ideal annRM  = {r E R;rm  = 0 V  mE M} plays a central

 

role  in  our  work.  In  fact,  we  shall  be  concemed   with  the  case  where annR1i1 = annR(x) for   some   x EM such  modules  will  be  called bounded  modules.[t  htrns out that there are many classes of modules properly contained in the class of bounded modules such as cyclic modules, torsion -G·ee modulcs,faithful  multiplicat

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly C_11-Condition Modules and Strongly T_11-Type Modules
...Show More Authors

      In this paper, we introduced module that satisfying strongly -condition modules and strongly -type modules as generalizations of t-extending. A module  is said strongly -condition if for every submodule of  has a complement which is fully invariant direct summand. A module   is said to be strongly -type modules if every t-closed submodule has a complement which is a fully invariant direct summand. Many characterizations for modules with strongly -condition for strongly -type module are given. Also many connections between these types of module and some related types of modules are investigated.

View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
P-small Compressible Modules and P-small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this papers we introduced and studied concept P-small compressible  (An     is said to be P-small compressible if  can be embedded in every of it is nonzero P-small submodule of . Equivalently,  is P-small compressible if there exists a monomorphism  , ,     is said to be P-small retractable if  , for every non-zero P-small submodule of . Equivalently,  is P-small retractable if there exists a homomorphism  whenever  as a generalization of compressible  and retractable  respectively and give some of their advantages characterizations and examples.

View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .     In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their adv

... Show More
Crossref