In this paper we introduced a new type of integrals based on binary element sets “a generalized integral of Shilkret and Choquet integrals” that combined the two kinds of aggregation functions which are Shilkret and Choquet integrals. Then, we gave some properties of that integral. Finally, we illustrated our integral in a numerical example.
.
Let M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get of the strengths and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered
... Show MoreIn this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreSoft closure spaces are a new structure that was introduced very recently. These new spaces are based on the notion of soft closure operators. This work aims to provide applications of soft closure operators. We introduce the concept of soft continuous mappings and soft closed (resp. open) mappings, support them with examples, and investigate some of their properties.
تهدف هذه الدراسة للتعرف على السياسات اإلاسرائيلية المتبعة على الارض والمتمثلة في االاستيطان
الاستعماري والطرق التفافية، ومصادرة الاراضي وجدار الضم والتوسع العنصري، بالاضافة إلى التصنيف
الاداري للمناطق في الضفة الغربية حسب ما جاء في اتفاقية أوسلو، والتي من شأنها التأثير على تلك
المناطق، وال سيما قطاع اإلسكان الذي يعد من أهم القطاعات التي تتر كب وبالتحديد في منطقة الدراسة،
وسوف تحاول هذه الدراسة تس
Let G be a graph, each edge e of which is given a weight w(e). The shortest path problem is a path of minimum weight connecting two specified vertices a and b, and from it we have a pre-topology. Furthermore, we study the restriction and separators in pre-topology generated by the shortest path problems. Finally, we study the rate of liaison in pre-topology between two subgraphs. It is formally shown that the new distance measure is a metric
The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.
The primary purpose of this subject is to define new games in ideal spaces via set. The relationships between games that provided and the winning and losing strategy for any player were elucidated.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show More