Preferred Language
Articles
/
jih-2512
Comparison Among Three Estimation Methods to Estimate Cascade Reliability Model (2+1) Based On Inverted Exponential Distribution

      In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get  of the strengths  and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered estimator are discussed including the study of mentioned expressions. The numerical results are exhibited and put it in tables.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

Crossref
View Publication Preview PDF
Publication Date
Sun Jun 02 2019
Journal Name
Baghdad Science Journal
Estimating the Reliability Function of (2+1) Cascade Model

This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Comparison Different Estimation Method for Reliability Function of Rayleigh Distribution Based On Fuzzy Lifetime Data

    In this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as  the fuzzy reliability at the estimation  of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Bayes Estimators of Reliability in the Exponential Distribution

Abstract

           We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 16 2023
Journal Name
Iraqi Journal For Computer Science And Mathematics
Some Methods to Estimate the Parameters of Generalized Exponential Rayleigh Model by Simulation

This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others

Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jan 16 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison of some reliability estimation methods for Laplace distribution using simulations

In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes

Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Reliability of Stress - Strength and Its Estimation of Exponentiated Q-Exponential Distribution

      In this paper, we study a single stress-strength reliability system   , where Ƹ and ƴ are independently Exponentiated q-Exponential distribution. There are a few traditional estimating approaches that are  derived, namely  maximum likelihood estimation (MLE) and the Bayes (BE) estimators of R. A wide mainframe simulation is used to compare the performance of the proposed estimators using MATLAB program. A simulation study show that the Bayesian estimator is the best estimator than other estimation method under consideration using two criteria such as the “mean squares error (MSE)” and “mean absolutely error (MAPE)”.

Scopus (2)
Scopus Crossref
View Publication Preview PDF