Preferred Language
Articles
/
ijs-688
Fabrication and Study of Nano catalysis for Alkaline Fuel Cell

In this paper the manufacture of an alkaline fuel cell electrodes made upfrom a Nano mesh (Pt:NiO) catalyst has been studying , made from a Nano mesh (Pt:NiO ) catalyst. The general morphology of the samples is were imaged by using with the an Atomic Force Microscope (AFM) to determine the roughness of the prepared surface, it constructed from nanostructure with dimensions in order of 35 nm. The Structural characteristics were studied through the analysis of X-ray diffraction (XRD) of the prepared nanomaterial for determining the yielding phase;1. 72 volt was also obtained at 0.02 A/cm2 current density for an alkaline fuel cell.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Scopus
Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Indian Journal Of Natural Sciences
Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Advanced nano membrane for an alkaline Fuel Cell
Abstract<p>Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.</p>
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Apr 21 2020
Journal Name
University Of Thi-qar Journal Of Science (university Of Thi-qar Journal Of Science (utsci) The 4th Scientific Conference Of Science College/ University Of Thi_qari) The 4th Scientific Conference Of Science College/ University Of Thi_qar
Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Characterization of nickel oxide nanocatalyst electrodes for an alkaline fuel cell
Abstract<p>In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.</p>
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Physics: Conference Series
Development of carbon nanotubes catalyst supported for alkaline fuel cell technology
Abstract<p>Study of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.</p>
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
International Science And Engineering Congress Book
Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 12 2013
Journal Name
International Journal Of Advanced Research In Engineering And Technology (ijaret)
FABRICATION OF AGAL/SI SOLAR CELL

The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.

Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
American Institute Of Physics
Fabrication of AgInSe2 heterojunction solar cell

Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short

... Show More
Scopus (2)
Scopus
Preview PDF