Let be any connected graph with vertices set and edges set . For any two distinct vertices and , the detour distance between and which is denoted by is a longest path between and in a graph . The detour polynomial of a connected graph is denoted by ; and is defined by . In this paper, the detour polynomial of the theta graph and the uniform theta graph will be computed.
The Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.
Maplesoft is a technical computation forms which is a heart of problem solving in mathematics especially in graph theory. Maplesoft has established itself as the computer algebra system for researchers. Maplesoft has more mathematical algorithms which is covering a wide range of applications. A new family ( ) of 6-bridge graph still not completely solved for chromatic number, chromatic polynomial and chromaticity. In this paper we apply maplesoft on a kind of 6-bridge graph ( ) to obtain chromatic number, chromatic polynomial and chromaticity. The computations are shown that graph contents 3 different colours for all vertices, 112410 different ways to colour a graph such that any two adjacent vertices have different colour by using 3 dif
... Show MoreLet be any group with identity element (e) . A subgroup intersection graph of a subset is the Graph with V ( ) = - e and two separate peaks c and d contiguous for c and d if and only if , Where is a Periodic subset of resulting from . We find some topological indicators in this paper and Multi-border (Hosoya and Schultz) of , where , is aprime number.
This work aims to introduce and to study a new kind of divisor graph which is called idempotent divisor graph, and it is denoted by . Two non-zero distinct vertices v1 and v2 are adjacent if and only if , for some non-unit idempotent element . We establish some fundamental properties of , as well as it’s connection with . We also study planarity of this graph.
For a finite group G, the intersection graph of G is the graph whose vertex set is the set of all proper non-trivial subgroups of G, where two distinct vertices are adjacent if their intersection is a non-trivial subgroup of G. In this article, we investigate the detour index, eccentric connectivity, and total eccentricity polynomials of the intersection graph of subgroups of the dihedral group for distinct primes . We also find the mean distance of the graph .
A graph
is said to be singular if and only if its adjacency matrix is singular. A graph
is said to be bipartite graph if and only if we can write its vertex set as
, and each edge has exactly one end point in
and other end point in
. In this work, we will use graphic permutation to find the determinant of adjacency matrix of bipartite graph. After that, we will determine the conditions that the bipartite graph is singular or non-singular.
A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense related. The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). A directed graph is a graph in which edges have orientation. A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex. For a simple undirected graph G with order n, and let denotes its complement. Let δ(G), ∆(G) denotes the minimum degree and maximum degree of G respectively. The complement degree polynomial of G is the polynomial CD[G,x]= , where C
... Show MoreA new definition of a graph called Pure graph of a ring denote Pur(R) was presented , where the vertices of the graph represent the elements of R such that there is an edge between the two vertices ???? and ???? if and only if ????=???????? ???????? ????=????????, denoted by pur(R) . In this work we studied some new properties of pur(R) finally we defined the complement of pur(R) and studied some of it is properties
In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.
The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.