A graph
is said to be singular if and only if its adjacency matrix is singular. A graph
is said to be bipartite graph if and only if we can write its vertex set as
, and each edge has exactly one end point in
and other end point in
. In this work, we will use graphic permutation to find the determinant of adjacency matrix of bipartite graph. After that, we will determine the conditions that the bipartite graph is singular or non-singular.
Suppose that is a finite group and is a non-empty subset of such that and . Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper, we introduce the generalized Cayley graph denoted by that is a graph with vertex set consists of all column matrices which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of similar entry of and is matrix with all entries in , is the transpose of and . In this paper, we clarify some basic properties of the new graph and assign the structure of when is complete graph , complete bipartite graph and complete
... Show MoreThe main aim of this research is to present and to study several basic characteristics of the idea of FI-extending semimodules. The semimodule is said to be an FI-extending semimodule if each fully invariant subsemimodule of is essential in direct summand of . The behavior of the FI-extending semimodule with respect to direct summands as well as the direct sum is considered. In addition, the relationship between the singularity and FI-extending semimodule has been studied and investigated. Finally extending propertywhich is stronger than FI extending, that has some results related to FI-extending and singularity is also investigated.
This work aims to introduce and to study a new kind of divisor graph which is called idempotent divisor graph, and it is denoted by . Two non-zero distinct vertices v1 and v2 are adjacent if and only if , for some non-unit idempotent element . We establish some fundamental properties of , as well as it’s connection with . We also study planarity of this graph.
. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
Let be any connected graph with vertices set and edges set . For any two distinct vertices and , the detour distance between and which is denoted by is a longest path between and in a graph . The detour polynomial of a connected graph is denoted by ; and is defined by . In this paper, the detour polynomial of the theta graph and the uniform theta graph will be computed.
A new definition of a graph called Pure graph of a ring denote Pur(R) was presented , where the vertices of the graph represent the elements of R such that there is an edge between the two vertices ???? and ???? if and only if ????=???????? ???????? ????=????????, denoted by pur(R) . In this work we studied some new properties of pur(R) finally we defined the complement of pur(R) and studied some of it is properties
Let G be a finite group and X be a G-conjugacy of elements of order 3. The A4-graph of G is a simple graph with vertex set X and two vertices x,yÎX are linked if x≠ y and xy-1 is an involution element. This paper aims to investigate the A4-graph properties for the monster Held group He.
The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.
For a finite group G, the intersection graph of G is the graph whose vertex set is the set of all proper non-trivial subgroups of G, where two distinct vertices are adjacent if their intersection is a non-trivial subgroup of G. In this article, we investigate the detour index, eccentric connectivity, and total eccentricity polynomials of the intersection graph of subgroups of the dihedral group for distinct primes . We also find the mean distance of the graph .