Maplesoft is a technical computation forms which is a heart of problem solving in mathematics especially in graph theory. Maplesoft has established itself as the computer algebra system for researchers. Maplesoft has more mathematical algorithms which is covering a wide range of applications. A new family ( ) of 6-bridge graph still not completely solved for chromatic number, chromatic polynomial and chromaticity. In this paper we apply maplesoft on a kind of 6-bridge graph ( ) to obtain chromatic number, chromatic polynomial and chromaticity. The computations are shown that graph contents 3 different colours for all vertices, 112410 different ways to colour a graph such that any two adjacent vertices have different colour by using 3 different colour, graph has isomorphic graph which has same chromatic polynomial of graph . The odd number of vertices located in one of these bridges made chromatic number 3. The chromatic number was the important factor that made the number of way 112410. A bijection function created isomorphic graph to graph and the chromatic polynomial of was ( ) ( ).
Let R be a commutative ring , the pseudo – von neuman regular graph of the ring R is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if , this graph denoted by P-VG(R) , in this work we got some new results a bout chromatic number of P-VG(R).
Let be any connected graph with vertices set and edges set . For any two distinct vertices and , the detour distance between and which is denoted by is a longest path between and in a graph . The detour polynomial of a connected graph is denoted by ; and is defined by . In this paper, the detour polynomial of the theta graph and the uniform theta graph will be computed.
Recently, complementary perfect corona domination in graphs was introduced. A dominating set S of a graph G is said to be a complementary perfect corona dominating set (CPCD – set) if each vertex in is either a pendent vertex or a support vertex and has a perfect matching. The minimum cardinality of a complementary perfect corona dominating set is called the complementary perfect corona domination number and is denoted by . In this paper, our parameter hasbeen discussed for power graphs of path and cycle.
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
In this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show MoreIn this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.
Let be any group with identity element (e) . A subgroup intersection graph of a subset is the Graph with V ( ) = - e and two separate peaks c and d contiguous for c and d if and only if , Where is a Periodic subset of resulting from . We find some topological indicators in this paper and Multi-border (Hosoya and Schultz) of , where , is aprime number.
In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system. Compare the results of suggested method with the results of another method (closed Newton-Cotes formula) Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method