For a finite group G, the intersection graph of G is the graph whose vertex set is the set of all proper non-trivial subgroups of G, where two distinct vertices are adjacent if their intersection is a non-trivial subgroup of G. In this article, we investigate the detour index, eccentric connectivity, and total eccentricity polynomials of the intersection graph of subgroups of the dihedral group for distinct primes . We also find the mean distance of the graph .
The following question was raised by L.Fuchs: "what are the subgroups of an abelian group G that can be represented as intersections of pure subgroups of G ? . Fuchs also added that “One of my main aims is to give the answers to the above question". In this paper, we shall define new subgroups which are a family of the pure subgroups. Then we shall answer problem 2 of L.Fuchs by these semi-pure subgroups which can be represented as the intersections of pure subgroups.
The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
Let G be a finite group and X be a G-conjugacy of elements of order 3. The A4-graph of G is a simple graph with vertex set X and two vertices x,yÎX are linked if x≠ y and xy-1 is an involution element. This paper aims to investigate the A4-graph properties for the monster Held group He.
Assume that G is a finite group and X = tG where t is non-identity element with t3 = 1. The simple graph with node set being X such that a, b ∈ X, are adjacent if ab-1 is an involution element, is called the A4-graph, and designated by A4(G, X). In this article, the construction of A4(G, X) is analyzed for G is the twisted group of Lie type 3D4(3).
Let be any group with identity element (e) . A subgroup intersection graph of a subset is the Graph with V ( ) = - e and two separate peaks c and d contiguous for c and d if and only if , Where is a Periodic subset of resulting from . We find some topological indicators in this paper and Multi-border (Hosoya and Schultz) of , where , is aprime number.
The depth of causative source of gravity is one of the most important parameter
of gravity investigation. Present study introduces the theoretical solve of the
intersection point of the horizontal and vertical gradients of gravity anomaly. Two
constants are obtained to estimate the depth of causative source of gravity anomaly,
first one is 1.7807 for spherical body and the second is 2.4142 for the horizontal
cylinder body. These constants are tested for estimating the depth of three actual
cases and good results are obtained. It is believed that the constants derived on
theoretical bases are better than those obtained by empirical experimental studies.
A graph
is said to be singular if and only if its adjacency matrix is singular. A graph
is said to be bipartite graph if and only if we can write its vertex set as
, and each edge has exactly one end point in
and other end point in
. In this work, we will use graphic permutation to find the determinant of adjacency matrix of bipartite graph. After that, we will determine the conditions that the bipartite graph is singular or non-singular.
The goal of this paper is to construct an arcs of size five and six with stabilizer groups of type alternating group of degree five and degree six . Also construct an arc of degree five and size with its stabilizer group, and then study the effect of and on the points of projective plane. Also, find a pentastigm which has the points on a line. Partitions on projective plane of order sixteen into subplanes and arcs have been described.
Let be any connected graph with vertices set and edges set . For any two distinct vertices and , the detour distance between and which is denoted by is a longest path between and in a graph . The detour polynomial of a connected graph is denoted by ; and is defined by . In this paper, the detour polynomial of the theta graph and the uniform theta graph will be computed.
One of the main element in the network is the intersection which consider as the critical points because there are many conflict in this element. The capability and quality of operation of an intersection was assessed to provide a better understanding of the network's traffic efficiency. In Baghdad city, the capital of/Iraq the majority of the intersections are operated under the congestion status and with level of service F, therefore theses intersection are consider as high spot point of delay in the network of Baghdad city. In this study we selected Al-Ameria signalized intersection as a case study to represent the delay problem in the intersections in Baghdad. The intersection is located in the w