The cozy partitions achieved more creativity by emerging with many topics in representation theory and mathematical relations. We find the precise number of cozy tableaux in the case with any number of and . Specifically, we use the MATLAB programme that coincided with the mathematical solution in giving precision to these numbers in this case.
In this paper we introduce a new class of operators on Hilbert space. We
call the operators in this class, n,m- powers operators. We study this class
of operators and give some of their basic properties.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
In this paper we define and study new concepts of functions on fibrewise topological spaces over B namely, fibrewise weakly (resp., closure, strongly) continuoac; funttions which are analogous of weakly
(resp., closure, strongly) continuous functions and the main result is : Let <p : XY be a fibrewise closure (resp., weakly, closure, strongly, strongly) continuous function, where Y is fibrewise topological space over B and X is a fibrewise set which has the
in
... Show MoreA class of hyperrings known as divisible hyperrings will be studied in this paper. It will be presented as each element in this hyperring is a divisible element. Also shows the relationship between the Jacobsen Radical, and the set of invertible elements and gets some results, and linked these results with the divisible hyperring. After going through the concept of divisible hypermodule that presented 2017, later in 2022, the concept of the divisible hyperring will be related to the concept of division hyperring, where each division hyperring is divisible and the converse is achieved under conditions that will be explained in the theorem 3.14. At the end of this paper, it will be clear that the goal of this paper is to study the concept
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreIn this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules,
essentially retractable modules, compressible modules and essentially compressible
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-
Dedekind) if, Hom(M N ,M ) 0 for all N ≤e M (resp. N ≤ M). Equivalently, a
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each
f End (M) R , Kerf ≤ e M implies f = 0 (resp. f 0 implies ker f 0 ).