We introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Let be a commutative ring with identity and let be an R-module. We call an R-submodule of as P-essential if for each nonzero prime submodule of and 0 . Also, we call an R-module as P-uniform if every non-zero submodule of is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule of a multiplication R-module becomes P-essential. Moreover, various properties of P-essential submodules are considered.
Our aim in this paper is to introduce the notation of nearly primary-2-absorbing submodule as generalization of 2-absorbing submodule where a proper submodule of an -module is called nearly primary-2-absorbing submodule if whenever , for , , , implies that either or or . We got many basic, properties, examples and characterizations of this concept. Furthermore, characterizations of nearly primary-2-absorbing submodules in some classes of modules were inserted. Moreover, the behavior of nearly primary-2-absorbing submodule under -epimorphism was studied.
Let be a commutative ring with identity. The aim of this paper is introduce the notion of a pseudo primary-2-absorbing submodule as generalization of 2-absorbing submodule and a pseudo-2-absorbing submodules. A proper submodule of an -module is called pseudo primary-2-absorbing if whenever , for , , implies that either or or . Many basic properties, examples and characterizations of these concepts are given. Furthermore, characterizations of pseudo primary-2-absorbing submodules in some classes of modules are introduced. Moreover, the behavior of a pseudo primary-2-absorbing submodul
... Show MoreIn this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
Let R be a commutative ring with unity and let M be an R-module. In this paper we
study strongly (completely) hollow submodules and quasi-hollow submodules. We investigate
the basic properties of these submodules and the relationships between them. Also we study
the be behavior of these submodules under certain class of modules such as compultiplication,
distributive, multiplication and scalar modules. In part II we shall continue the study of these
submodules.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.