Preferred Language
Articles
/
ijs-4027
On P-Essential Submodules
...Show More Authors

Let  be a commutative ring with identity and let   be an R-module. We call an R-submodule  of  as P-essential if  for each nonzero prime submodule  of    and 0  . Also, we call an R-module  as P-uniform if every non-zero submodule  of  is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule  of a multiplication R-module  becomes P-essential. Moreover, various properties of P-essential submodules are considered.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-Essential Submodules
...Show More Authors

Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.

View Publication Preview PDF
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Some Results on Weak Essential Submodules
...Show More Authors

Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Some Results on Weak Essential Submodules
...Show More Authors

Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Weak Essential Submodules
...Show More Authors

A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
On ST-essential (complement) submodules
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
H-essential Submodules and Homessential Modules
...Show More Authors

The main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Annihilator Essential Submodules
...Show More Authors
Abstract<p>Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.</p>
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
On Essential (Complement) Submodules with Respect to an Arbitrary Submodule
...Show More Authors

 

View Publication Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weak Essential Fuzzy Submodules Of Fuzzy Modules
...Show More Authors

        Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of  weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Strongly Essential Submodules and Modules with the se-CIP
...Show More Authors

     Let  be a ring with identity. Recall that a submodule  of a left -module  is called strongly essential if for any nonzero subset  of , there is  such that , i.e., . This paper introduces a class of submodules called se-closed, where a submodule  of  is called se-closed if it has no proper strongly essential extensions inside . We show by an example that the intersection of two se-closed submodules may not be se-closed. We say that a module  is have the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two se-closed submodules of  is again se-closed in . Several characterizations are introduced and studied for each of these concepts. We prove for submodules  and  of  that a module  has the

... Show More
View Publication Preview PDF
Scopus Crossref