Preferred Language
Articles
/
ijs-5772
A Prediction of Skin Cancer using Mean-Shift Algorithm with Deep Forest Classifier
...Show More Authors

      Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 15 2022
Journal Name
Bionatura
NDRG1 is being investigated as a possible bladder cancer biomarker in the Iraqi population.
...Show More Authors

With 549,393 new cases recorded in 2018, bladder cancer is one of the most common malignancies worldwide. Urinary bladder cancer is the cause of about 3 percent of all new cancer diagnoses and 2.1 percent of all cancer deaths. This study aims to evaluate the efficiency of the N-myc downstream-regulated gene 1(NDRG1) as a biomarker for bladder cancer patients in the Iraqi population. One hundred individuals in the case-control study were enrolled and divided into two groups. The first group included 50 patients diagnosed with a bladder mass and investigated by undergoing cystoscopy examination for transurethral resection of bladder tumor (TURB). The second group included 50 healthy individuals who had normal bladder tissue. The resul

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Advances In Cancer Biology - Metastasis
CX3CL1 as potential immunotherapeutic tool for bone metastases in lung cancer: A preclinical study
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Pertanika Journal Of Science & Technology
Modified Kohonen network algorithm for selection of the initial centres of Gustafson-Kessel algorithm in credit scoring
...Show More Authors

Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res

... Show More
Scopus (8)
Scopus
Publication Date
Thu Jan 09 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Effectiveness of prophylactic agents in prevention of oral mucositis in patients with head and neck cancer receiving radiotherapy
...Show More Authors

Background: Oral mucositis is regarded as one of the major complications of radiation therapy especially in patients with head and neck cancer. The aim of this study was to evaluate the efficacy of glutamine in preventing or minimizing the development of mucositis of the oral cavity. Subjects and methods: Forty-six participants were randomly selected amongst those who were planned to receive radiation therapy for head and neck region cancers. They were randomly divided into two groups of 23 subjects, one group received glutamine and the second group received a placebo. Results: Glutamine had a statistically significant effect in reducing the occurrence and/or severity of oral mucositis in the treated patients compared to patients in the con

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 30 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
An efficient artificial fish swarm algorithm with harmony search for scheduling in flexible job-shop problem
...Show More Authors

Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best

... Show More
View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Prediction of Well Logs Data and Estimation of Petrophysical Parameters of Mishrif Formation, Nasiriya Field, South of Iraq Using Artificial Neural Network (ANN)
...Show More Authors

    Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Rehabend
Prediction of impact force-time history in sandy soils
...Show More Authors

Scopus
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research & Development
Loss of the Epigenetically Inactivated-X-Chromosome (Barr Body) a Potential Biomarker for Breast Cancer Development
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref