Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.
A special methodology for adding a watermark for colored (RGB) image is formed and adding the wavelet transform as a tool during this paper. The watermark is added into two components. The primary one is by taking the key that contain associate eight range from (0...7) every range in it determines the actual bit position in specific component of canopy image. If that bit is analogous to the bit in watermark, (0) are hold on within the Least Significant Bit (LSB) of the watermarked image; otherwise (1) are hold on. The other is that it will add multiple secret keys victimization shift and rotate operations. The watermark is embedded redundantly over all extracted blocks in image to extend image protection. This embedding is completed with
... Show MoreThe process involved isolating E. faecium from the gut of honeybees, screening the bacterium for bacteriocin-like inhibitory substance (BLIS), evaluating its impact on the expression of the mexA gene in multidrug-resistant (MDR) P. aeruginosa, and determining the role of bacteriocin in treating infected wounds in mice through histopathological examination. After evaluating the best circumstances for producing BLIS, it was discovered that glucose was a superior carbon source and yeast extract was the best source of nitrogen. The pH was found to be 5, the ideal incubation time was 72 hours, and ammonium sulfate salt was used for partial purification at 80% saturation. The identification of MDR P. aeruginosa isolates from pus infection
... Show MoreThis study was conducted with the aim to extract and purify a polyphenolic compound “ Resveratrol†from the skin of black grapes Vitis vinifera cultivated in Iraq. The purified resveratrol is obtained after ethanolic extraction with 80% v/v solution for fresh grape skin, followed by acid hydrolysis with 10% HCl solution then the aglycon moiety was taken with organic solvent
( chloroform). Using silica gel G60 packed glass column chromatography with mobile phase benzene: methanol: acetic acid 20:4:1 a
... Show MoreIn the present study, five derivatives have been designed to be synthesized as possible mutual prodrugs for 5-Fluorouracil (5-FU) and non steroidal anti-inflammatory drugs (NSAIDs) to selectively deliver the drugs into the cancer cells. The synthesis of the target compounds were accomplished following multistep reaction procedures, the chemical reaction followed up and the purity of the products were checked by TLC. The structure of the final compounds and their intermediates were confirmed by their melting points, infrared spectroscopy and elemental microanalysis, the hydrolysis of compound III was studied using HPLC technique. According to the results mentioned above, compounds (I−V) can be good candidates as possible mutual prod
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreBackground: To determine the DNA content in subfertile patients and to correlate it with seminal sperm concentration.
Design: Prospective observational study.
Setting: College of Medicine, Dept. of Physiological chemistry and Institute for embryo Research and infertility treatment-University of Baghdad.The study was conducted
through years 2004-2005.
Methods: A random sample of 61 subfertile male patients undergoing semen evaluation and aged from 20-45 years were studied. Semen samples were assessed for seminal sperm
concentration microscopically and were classified into 3 different groups according to count (million/ml).Then sperm D N A content (μg/ml) was estimated using a microchemical
spectropho
The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show More