Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.
Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show MoreBack ground: Cancer is the second leading cause of death throughout the world. Breast cancer, is one of the leading mortality reasons in women from Western Countries, in Iraq, breast cancer is the second reason of death After cardiovascular Diseases.
Material and method:
The study was carried out of period from October/2016-january /2017 and included (90) serum samples for Iraqi women suffered from breast cancer . Samples were divided into two groups ,the first group included (66) patients (females) their age rang (22-55) years which attended to (tumor unit) at medical city educational oncology hospital and Al-Amal Al-Waatanii hospital in Baghdad ,the second group included (38) for
... Show MoreVolumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) are comparable for nasopharyngeal cancerous radiation therapy. This research intends to analyze the high-quality plan using accomplishment, conformance, and homogeneity criteria.
The study involved 40 patients with a postnasal cancerous tumor. The patients underwent computed tomography (CT) simulation to scan the anatomical details of the patients' heads. Then, their data was forwarded to the treatment planning system (TPS) workstation for IMRT and VMAT planning. The plans were evaluated using the IOA, HI, and CI indices.
The nasopharynx coverage results consist of the GTV and PTV at 95%. The statistical study reveals that VMAT provides
... Show MoreThe cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but in this paper, the researcher proposed five pile types, one of them is not a traditional, and developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreFeatures is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
Background: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.
Aim of the study: To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).
Type of the study: a prospective analytic study
Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad
... Show MoreThe main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show More