Preferred Language
Articles
/
VYYls4YBIXToZYALy7J4
Time-Cost-Quality Trade-off Model for Optimal Pile Type Selection Using Discrete Particle Swarm Optimization Algorithm

The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with the help of (Mat lab software), as a tool for decision making problem about choosing the best alternative of the traded piles, and proposes a multi objective optimization model, which aims to optimize the time, cost and quality of the pile types, and assist in selecting the most appropriate pile types. The researcher selected 10 of senior engineers to conduct interviews with them.  And prepared some questions for interviews and open questionnaire. The individuals are selected from private and state sectors each one have 10 years or more experience in pile foundations work. From personal interviews and field survey the research has shown that most of the experts, engineers are not fully aware of new soft wear techniques to helps them in choosing alternatives, despite their belief in the usefulness of using modern technology and software. The Problem is multi objective optimization problem, so after running the PSO algorithm it is usual to have more than one optimal solution, for five proposed pile types, finally the researcher  evaluated and  discussed the output results and  found out that pre-high tension spun (PHC)pile type was the optimal pile type.

Scopus Clarivate Crossref
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Optimal Robot Path Planning using Enhanced Particle Swarm Optimization algorithm

The aim of robot path planning is to search for a safe path for the mobile robot. Even though there exist various path planning algorithms for mobile robots, yet only a few are optimized. The optimized algorithms include the Particle Swarm Optimization (PSO) that finds the optimal path with respect to avoiding the obstacles while ensuring safety. In PSO, the sub-optimal solution takes place frequently while finding a solution to the optimal path problem. This paper proposes an enhanced PSO algorithm that contains an improved particle velocity. Experimental results show that the proposed Enhanced PSO performs better than the standard PSO in terms of solution’s quality. Hence, a mobile robot implementing the proposed algorithm opera

... Show More
Scopus (11)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Wireless Optimization Algorithm for Multi-floor AP deployment using binary particle swarm optimization (BPSO)
Abstract<p>Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Sat Nov 30 2019
Journal Name
Journal Of Engineering And Applied Sciences
Scopus (2)
Scopus Crossref
View Publication
Publication Date
Thu May 01 2008
Journal Name
2008 International Conference On Computer And Communication Engineering
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
WOAIP: Wireless Optimization Algorithm for Indoor Placement Based on Binary Particle Swarm Optimization (BPSO)

Optimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received s

... Show More
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2015
Journal Name
Journal Of Mathematics And System Science
Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to d

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Archives Of Civil Engineeringthis Link Is Disabled
Scopus (3)
Scopus
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Power-Efficient Virtual Machine Placement in Cloud Datacenters using Heuristic Assisted Enhanced Discrete Particle Swarm Optimization

    The increase in cloud computing services and the large-scale construction of data centers led to excessive power consumption. Datacenters contain a large number of servers where the major power consumption takes place. An efficient virtual machine placement algorithm is substantial to attain energy consumption minimization and improve resource utilization through reducing the number of operating servers. In this paper, an enhanced discrete particle swarm optimization (EDPSO) is proposed. The enhancement of the discrete PSO algorithm is achieved through modifying the velocity update equation to bound the resultant particles and ensuring feasibility. Furthermore, EDPSO is assisted by two heuristic algorithms random first fit (RFF) a

... Show More
Crossref
View Publication