Preferred Language
Articles
/
9RalVooBVTCNdQwCN5v5
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local improvement operator to effectively discover community structure in the modular complex networks when employing the modularity density metric as a single-objective function. The framework of the proposed algorithm consists of three main steps: an initialization strategy, a movement strategy based on perturbation genetic operators, and an improvement operator. The key idea behind the improvement operator is to determine and reassign the complex network nodes that are located in the wrong communities if the majority of their topological links do not belong to their current communities, making it appear that these nodes belong to another community. The performance of the proposed algorithm has been tested and evaluated when applied to publicly-available modular complex networks generated using a flexible and simple benchmark generator. The experimental results showed the effectiveness of the suggested method in discovering community structure over modular networks of different complexities and sizes.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to d

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Oct 01 2019
Journal Name
2019 International Conference On Electrical Engineering And Computer Science (icecos)
Scopus (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Nov 30 2019
Journal Name
Journal Of Engineering And Applied Sciences
Scopus (2)
Scopus Crossref
View Publication
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Optimal Robot Path Planning using Enhanced Particle Swarm Optimization algorithm

The aim of robot path planning is to search for a safe path for the mobile robot. Even though there exist various path planning algorithms for mobile robots, yet only a few are optimized. The optimized algorithms include the Particle Swarm Optimization (PSO) that finds the optimal path with respect to avoiding the obstacles while ensuring safety. In PSO, the sub-optimal solution takes place frequently while finding a solution to the optimal path problem. This paper proposes an enhanced PSO algorithm that contains an improved particle velocity. Experimental results show that the proposed Enhanced PSO performs better than the standard PSO in terms of solution’s quality. Hence, a mobile robot implementing the proposed algorithm opera

... Show More
Scopus (11)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
An Evolutionary Bi-clustering Algorithm for Community Mining in Complex Networks

A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Wireless Optimization Algorithm for Multi-floor AP deployment using binary particle swarm optimization (BPSO)
Abstract<p>Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning

This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 30 2020
Journal Name
Telecommunication Systems
Scopus (23)
Crossref (20)
Scopus Clarivate Crossref
View Publication