Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.
The science of information security has become a concern of many researchers, whose efforts are trying to come up with solutions and technologies that ensure the transfer of information in a more secure manner through the network, especially the Internet, without any penetration of that information, given the risk of digital data being sent between the two parties through an insecure channel. This paper includes two data protection techniques. The first technique is cryptography by using Menezes Vanstone elliptic curve ciphering system, which depends on public key technologies. Then, the encoded data is randomly included in the frame, depending on the seed used. The experimental results, using a PSNR within avera
... Show MoreFuture wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreDensely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a si
... Show MoreBackground: Breast cancer is one of the common malignancies among women worldwide. Human papillomavirus (HPV) infections have been linked to many human cancers in addition to cervical cancer and one of them is breast cancer.
Objective: To investigate the presence of human papilloma virus type 6 and type 11in breast cancer tissue specimens by in situ hybridization technique.
Patients and Methods: Thirty four formalin-fixed, paraffin embedded tissue blocks from breast cancer patients were obtained from the archives of the pathology laboratory of Al-Yarmouk Teaching Hospital from January 2011 to July 2012. In addition formalin-fixed, paraffin embedded blocks tissue for twenty fibroadenoma of breast were collected and used as control g
Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value
Anaemia is a crucial issue among cancer patients and need to be treated properly. High incidence of anaemia in patients with cancer have been associated with several physiological manifestations, leading to decreased quality of life (QOL).
The current study aimed to assess the severity of anaemia, evaluate the current treatment guideline of anaemia, and to determine the association between the level of anaemia and its treatment on quality of life of breast cancer patients in Malaysia. This prospective study conducted among breast cancer patients in multicancer centers in Malaysia including three follow ups after receiving their chemotherapy. Clinical data were collected from their medical records and at each follow up, they asked
... Show Morehe dairy industry is one of the industrial activities classified within the food industries in all phases of the dairy industry, which leads to an increase in the amount of wastewater discharged from this industry. The study was conducted in the Abu Ghraib dairy factory, classified as one of the central factories in Iraq, located in the west of Baghdad governorate, with a design capacity of 22,815 tons of dairy products. The characteristics of the liquid waste generated from the factory were determined for the following parameters biological oxygen demand (BOD5), Chemical oxygen demand (COD), total suspended solids (TSS), pH, nitrate, phosphate, chloride, and sulfate with an average value of (1079, 1945, 323, 9.2, 24, 2
... Show MoreIn this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MoreInternational companies are striving to reduce their costs and increase their profits, and these trends have produced many methods and techniques to achieve these goals. these methods is heuristic and the other Optimization.. The research includes an attempt to adapt some of these techniques in the Iraqi companies, and these techniques are to determine the optimal lot size using the algorithms Wagner-Whitin under the theory of constraints. The research adopted the case study methodology to objectively identify the problem of research, namely determining lot size optimal for each of the products of electronic measurement laboratory in Diyala and in light of the bottlenecks in w
... Show More