Our goal in this work is to describe the structure of a class of bimodal self maps on the compact real interval I with zero topological entropy and transitive.
Compressing an image and reconstructing it without degrading its original quality is one of the challenges that still exist now a day. A coding system that considers both quality and compression rate is implemented in this work. The implemented system applies a high synthetic entropy coding schema to store the compressed image at the smallest size as possible without affecting its original quality. This coding schema is applied with two transform-based techniques, one with Discrete Cosine Transform and the other with Discrete Wavelet Transform. The implemented system was tested with different standard color images and the obtained results with different evaluation metrics have been shown. A comparison was made with some previous rel
... Show MoreIn this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
Expressions for the molecular topological features of silicon carbide compounds are essential for quantitative structure-property and structure-activity interactions. Chemical Graph Theory is a subfield of computational chemistry that investigates topological indices of molecular networks that correlate well with the chemical characteristics of chemical compounds. In the modern age, topological indices are extremely important in the study of graph theory. Topological indices are critical tools for understanding the core topology of chemical structures while examining chemical substances. In this article, compute the first and second k-Banhatti index, modified first and second k-Banhatti index, first and second k-hyper Banhatti index, fir
... Show MoreNumerous integral and local electron density’s topological parameters of significant metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp* Ir) (Cp Ru)2 (μ3-H) (μ-H)3]1 (Cp = η5 -C5Me5), (Cp* = η5 -C5Me4Et) were calculated and interpreted by using the quantum theory of atoms in molecules (QTAIM). The properties of bond critical points such as the delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density
... Show MoreIn this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
The main purpose of this paper is to introduce a some concepts in fibrewise totally topological space which are called fibrewise totally mapping, fiberwise totally closed mapping, fibrewise weakly totally closed mapping, fibrewise totlally perfect mapping fibrewise almost totally perfect mapping. Also the concepts as totally adherent point, filter, filter base, totally converges to a subset, totally directed toward a set, totally rigid, totally-H-set, totally Urysohn space, locally totally-QHC totally topological space are introduced and the main concept in this paper is fibrewise totally perfect mapping in totally top
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
The aim of this paper is to look at fibrewise slightly issuances of the more important separation axioms of ordinary topology namely fibrewise said to be fibrewise slightly T0 spaces, fibrewise slightly T1spaces, fibrewise slightly R0 spaces, fibrewise slightly T2 spaces, fibrewise slightly functionally T2 spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces. In addition, we announce and confirm many proposals related to these concepts.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.