In this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi
... Show MoreUnderstanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and und
... Show MoreIn this paper, the conditions of persistence of a mathematical model, consists from
a predator interacting with stage structured prey are established. The occurrence of
local bifurcation and Hopf bifurcation are investigated. Finally, in order to confirm
our obtained analytical results, numerical simulations have been done for a
hypothetical set of parameter values .
In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.
An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.
In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical
... Show MoreIn this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter