In this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point
In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreA modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t
... Show MoreWe propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.
In this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature
susceptible individuals (S1) , mature individuals (S2 ) , infectious individual
(I ), removal individuals (R) and vaccine population (V) . The existence,
uniqueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.
There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify t
In this work, we have developed a model that describes the relationships between top predators (such as tigers, hyenas, and others), crop raiders (such as baboons, warthogs, and deer), and prey (such as deer) in the coffee forests of southwest Ethiopia. Various potential equilibrium points are identified. Additionally, the model's stability in the vicinity of these equilibrium points is examined. An investigation of the model's Hopf bifurcation is conducted concerning several significant parameters. It is found that prey species may be extinct due to a lower growth rate and consumption by top predators in the absence of human interference in the carrying capacity of prey. It is observed that top predators may be extinct due to human interfe
... Show MoreThe objective of this paper is to study the stability of SIS epidemic model involving treatment. Two types of such eco-epidemiological models are introduced and analyzed. Boundedness of the system is established. The local and global dynamical behaviors are performed. The conditions of persistence of the models are derived.
In this paper a prey-predator model involving Holling type IV functional response
and intra-specific competition is proposed and analyzed. The local stability analysis of
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function and poincare-bendixson theorem. Finally, the numerical simulation is used to
study the global dynamical behavior of the system. It is observed that, the system has
either stable point or periodic dynamics.
For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E0 the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E1 and E2 happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened.