In this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature
susceptible individuals (S1) , mature individuals (S2 ) , infectious individual
(I ), removal individuals (R) and vaccine population (V) . The existence,
uniqueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.
There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify t
The objective of this paper is to study the stability of SIS epidemic model involving treatment. Two types of such eco-epidemiological models are introduced and analyzed. Boundedness of the system is established. The local and global dynamical behaviors are performed. The conditions of persistence of the models are derived.
An eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.
In this paper a mathematical model that describes the flow of infectious disease in a population is proposed and studied. It is assumed that the disease divided the population into four classes: susceptible individuals (S), vaccinated individuals (V), infected individuals (I) and recover individuals (R). The impact of immigrants, vaccine and external sources of disease, on the dynamics of SVIRS epidemic model is studied. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally the global dynamics of the proposed model is studied numerically.
In this paper a stage structure prey-predator model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The occurrence of a simple Hopf bifurcation and local bifurcation are investigated. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation and the effects of parameters system are discussed. It is observed that, the system has either stable point or periodic dynamics.
In this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.
... Show MoreIn this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.
A three species food web model involving a stage structure and cannibalism in the top predator species is proposed and studied. It is assumed that the prey species growth logistically in the absence of predator and the predation process occurred according to theLotka-Volterra functional response. The existence, uniqueness and bounded-ness of the solution of the model are investigated. The local and global stability conditions of all possible equilibrium points are established.The persistence conditions of the model are also determined. The local bifurcation near each of the equilibrium points is analyzed. The global dynamics of the model is investigated numerically and compared with the obtained analytical results. It is observed that the p
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreA partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and studied. The basic reproduction number is determined. The local and global stability of all equilibria of the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify the control set of parameters that affect the dynamics of the model.