In this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.
In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.
In this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.
Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the
... Show MoreIn this paper, a discrete- time ratio-dependent prey- predator model is proposed and analyzed. All possible fixed points have been obtained. The local stability conditions for these fixed points have been established. The global stability of the proposed system is investigated numerically. Bifurcation diagrams as a function of growth rate of the prey species are drawn. It is observed that the proposed system has rich dynamics including chaos.
An eco-epidemiological system incorporating a vertically transmitted infectious disease is proposed and investigated. Micheal-Mentence type of harvesting is utilized to study the harvesting effort imposed on the predator. All the properties of the solution of the system are discussed. The dynamical behaviour of the system, involving local stability, global stability, and local bifurcation, is investigated. The work is finalized with the numerical simulation to observe the global behaviour of the solution.
In this paper a stage structure prey-predator model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The occurrence of a simple Hopf bifurcation and local bifurcation are investigated. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation and the effects of parameters system are discussed. It is observed that, the system has either stable point or periodic dynamics.
This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreA prey-predator interaction model has been suggested in which the population of a predator consists of a two-stage structure. Modified Holling's disk equation is used to describe the consumption of the prey so that it involves the additional source of food for the predator. The fear function is imposed on prey. It is supposed that the prey exhibits anti-predator behavior and may kill the adult predator due to their struggle against predation. The proposed model is investigated for existence, uniqueness, and boundedness. After determining all feasible equilibrium points, the local stability analyses are performed. In addition, global stability analyses for this model using the Lyapunov method are investigated. The chance of occurrence of loc
... Show MoreThe mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation
... Show More