In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical result.
This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a
... Show MoreIn this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter
Start your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by
Understanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and und
... Show MoreThe avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels
... Show MoreIn this paper, a mathematical model consisting of the prey- predator model with treatment and disease infection in prey population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The stability analyses of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
We propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.