Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.
Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÃN such that annR(N)=annR(x).
In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.
Moreover, some relations between almost bounded submodules and other types of modules are considered.
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show Moreالمتغير العشوائي X له توزيع أسي اذا كان له دالة احتمالية الكثافة بالشكل:
عندما ، هذه هي الحالة الخاصة لتوزيع كاما.
غالباً جداً ولسبب معقول تأخذ . الحالة الخاصة لـ (1) التي نحصل عليها تسمى بالتوزيع الاسي لمعلمة واحدة.
اذا كانت ، ، التوزيع في هذه الحالة يسمى التوزيع الاسي القياسي
اما بالنسب
... Show MoreLet R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever r  R, x  M, 0  r x  N implies x  N or r  (N:M). In fact this concept is a generalization of the concept weakly prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered.
Let be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).