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On Simply* Compact Spaces

Introduction:

In 1969 M. K. Singal andAsha Mathur
presented the concept of nearly compact if
(every regular open cover of X has a finite sub
cover)[13], which depends on the regular open
set if (S = int(cl(S))) was used for the first time
in 1937 by M. H. Stone[14], it symbolizes by
RO(X). In 1985 S. N. Masheshwari and S. S.
Thakur presented the concept of «- compact
if (for all a-open cover of X has a finite sub
cover)[5], which depends on the a-open sets
if (K cint(cl(int(K)))) was used for the first
time in 1965 by Njasted [9], it symbolizes by
ao(x)).

In 2007, the term of " simply* _compact" was
used for the first time by M. El- Sayed[11], he
was adopted in his definition of anew set is said
a simply*open set, it symbolizes by S$M*0(X)),
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ABSTRACT/ In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we
study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as
aSM* _irresolte , aSM* __continuous and R SM*_ continuous, which are defined between two topological spaces. Keywords: simply* compact
, SM*_regular , SM*_normal, SM* _ Lindelsf , SM*_homemorphism. Key words : Breast cancer , Support Vector machine , Wisconsin Breast
Cancer , Confusion Matrix, Information Gain. . RESUMEN/ En el presente trabajo, se introdujo un simple * espacios compactos
definidos sobre simple * - conjunto de conocimientos previos y estudiamos la relacion entre los axiomas de separacion simple
* y la compacidad, ademas de introducir un nuevo tipo de funciones conocidas como aS ~ (M *) _irresolte, aS ~ (M *) ___
continuo y RS ~ (M *) _ continuo, que se definen entre dos espacios topoldgicos.

Palabras clave: simplemente * compacto, SM* _regular, SM* _normal, SM* _ Lindelo “f, SM* _homemorphism.

it is considered an amendment to the set
simply open set the researcher A. Neubrunnove
presented it in 1975[8] if (H = k U N such that
K is open set and N is nowhere dense (N is
nowhere dense if cl(int N) = ¢[151)), it
symbolizes by S$M0(X). He also studied the
basic concepts on this set and some of the
separation axioms( for example S™*_regular
and S™*_normal), and simply* - connect if ( a
subset M of apace(X, 1) is said simply* connect
relative to(X,t) if there are no subsets E and F
of X such that E and F are S™* — separated i.e
(two nonempty subsets E and F in a topological
space (X, 1) are said to be S™* — separated if E n
SMcl(F)=¢=F n S cl(F)) relative to(X,7)
and M =E U F) .In 2013 M. El- Sayed and I A.
Noaman presented a transformed definition of
simply open set if (A subset O of a topological
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space (X,t) is simply open set if int(cl(0)) <
cl(int(0)) )[12]. The aim of this paper is to
introduce some results on Simply* compact
and present a new types of functions known as
aSM* _irresolte , aS™*_continuous and R SM*_
continuous, which are defined between two
topological spaces.

1.Basic concepts

Definition 1.1 :[11] A subset F of a
topological space (X,7) is said to be Simply*
open set (for short, S”*_open) setif F € {X, @,
GUN; G is a proper open set and Nis a
nowhere dense set}.

It is symbolizes by SY*0(X). The complement
of an simply* open set is said to be simply*
closed (for short, S™*_closed) set and it
symbolizes is by SM* C(X).

Remark 1.1 :[11] The following diagram
show the relationship between this species
and other species:

Regular open (RO(X)) — a-open (@0(X)) — simply open(S™0 (X))

\) 7

Simply* open (5** O(X))

Diagram 1.1
Example 1.1 : let X={1234}, 1=
{X,0,{1},{2,3},{1,2,3}} then the set {4} € SM0(X)
but {4} ¢ s"*O(X) .
Definition 1.2 :[11] A space (X, 1) is said to be
simply* compact (for short, S™*_compact) if
every S™*_open cover of X has a finite sub
cover.
Definition 1.3 :[11] A space (X, 1) is said to be
SM* _regular if for every A € SM*C(X) ; x ¢ A then
there exist U,V € SM*0(X) ; U n V = ¢ such that
x EUand A c V.
Definition 1.4 :[11] A space (X, 1) is said to be
SM* _normal if forevery U,V € SM*C(X); U nV =
¢ then there exist H,F € SM*0(X) such thatU c
HandV c F.
Definitionl.5 :[6] A space (X,1) is said to be
a Lindeldf space if every open cover of X has a
countable sub cover.
Definition 1.6 :[11] If a function f:(X,7) —
(Y,0) is said to be SM*_irresulte if every Ue€
SM0(Y), f~1(U) € S 0(X).
Definition 1.7:[11] For any topological space
(X,7), a subset N,of X is called
SM* _neighborhood (for short, S™*_nbd) of a
point x € X if there exist S¥*_open set W such
that x € W c N,. The class of all S”*_nbd of
x is called s™*_neighborhood system of x and
denoted by S™* _N,.

Definition 1.8 :[11] For any topological space
(X,7) and Ac X. We define simply* interior
(resp. simply* closure) of A as the following:
-SM*_int(4) =U{G c X: G € SM* 0(X),G c A}
-SM*_cl(A) =N{F c X:F € SM* C(X)F > A}
Theorem 1.1 :[11] A SM*_closed subset of
SM* _compact space (X, 1) is SM*_compact.
Theorem 1.2 :[11] If a function f:(X,7) —
(Y,0) is SM*_irresulte surjectivand X is
SM* _compact then Y is S™* _compact.
2.Main results
Definition 2.1 : A space (X,7) is said to be
SM*T, space if for any two distinct points x and
y of X, there exist U,V € S*0(X) ;such that
xeUAdyelU)and (x ¢ V Ay € V).
Definition 2.2 : A space (X,7) is said to be
SM*T, space if for all x,y € X; x # y then there
exist U,V € SM*0(X) such that (x e UAy € V)
or(x eVAyelUandU nV=a.

Theorem 2.1 : Any S™*_compact space of
asM*T, space is SM*_closed.
Proof: Let A be a S™*_compact subset of a
SM* T, space(X,7),and suppose x € X —A. We
must find a S”*_neighborhood of x which does
not meet A (thus showing that X—-4 s
SM* _open), since X is SM*_T, space, given any
y € A, there are $"*_neighborhoods U, and ¥,
of x and y, respectively such that U, n V, =@.
Then{l,},y € A is an S™*_open cover of A.
Hence there are finitely many y say y;,y,, ..., ¥n
such that {V,,..,V,, } is an S™*_open cover of
A. Set U=U, n..nU, and V=V, u..Uul,
thenx e U,Ac Vand U nV =¢ and hence U
is SM* _neighborhood of x such that U n4 = ¢.
Then A is SM*_closed .

Definition 2.3 : A space (X,7) is said to be
SM*T, _space if X is both SM*_regular and
SM*T, space.

Definition 2.4 : A space (X,7) is said to be
SM*T, space if X is both S™*_ normal and
SM*T, space.

Remark 2.1 :The following diagram show the
relation between the types of Separation
Axioms

SM*T, space — SM*T,_space — SM*T,_ space
— SM*T, space

Diagram 2.1

Combining Theorem(1.1) and (2.1) we obtain
the following.

Corollary 2.1 : A subset of a S _ compact
and SM*T,_ space is S™* _ compact if and only if
itis SM* _closed.
Corollary 2.2 : A sM*
space is SM* T, _space.

_ compact and SM*T,_
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Proof: Let A ¢ X by Theorem(2.1) 4 is s™*
_closed, since there exist U,V € SM*0(X) such
that x e U,AcVand UnV=¢g (by proof
Theorem(2.1)), hence X is SM* _regular. Since X
is SM*T,_  space, by Diagram (2.1) X
is SM*T, space. HenceX isS"*T,_space .
Definition 2.5 : A space (X,7) is said to be
asM _ Lindeléf space if every SM* _ open cover
of X has a countable sub cover.

Remark 2.2 : Any S™* _ compact is SM* _
Lindelof .
Proposition 2.1 : A S _regular S™*

Lindeldf is SM*_normal.
Proof: Let (X,7) be SM*_regular Lindeléf space
and let 4,B be disjoint S*_closed subsets of
X.If x€eA ,then X—Bisa S _neighborhood
of x. Since X is SM* _regular, there is a
neighborhood U, of x such that S"*ClU, c X —
B(a space (X,t) is SM* _regular if and only if given
any x € X and any SY*_neighborhood U of x,
there is a SM*_neighborhodV of x such that
sMxCclv c U).
Similarly, if X € B, there is a
SM* _neighborhood U, of x such that sS™*Cl U, c
X —A.
If x is not an element of either 4 or B, then X —
(AU B) is aSM*_neighborhood of x; hence we
may find a S”* _neighborhood U, of x such that
sM*clu, ¢ X - (AuB)(and thus S™*ClU, n(Au
B) = ¢).
The family of U, for each x € X is an open
cover for X. Since X is SM*_Lindeléf, this
SM* _cover has a countable sub cover{U,,;
n=1,2,3,..}. Let U}, U,, ... be the U,,(relabeled
for convenience) which meet 4, and let v;, V,,
... be the V,,, which meet B.
Then for each positive integer n , S*ClLU, n
B=¢ and SMClV,nA=¢, moreover A c
Uy U, andB c uy V,. Define W, =U; and set
Y, =V, = SMclw,.
Let W, =U, —SM*ClY, and Y, =V, — (SM* ClW, U
SM*ClW,). Suppose W, and Y, have been
defined, then set W,,, = U, — S™(Cly; U
ClY, U ...u ClY,) and
Ypo1 = Vs — SM*(CIW, UCLW, U ..U CL W, 1), W,
is always an open set since
W, =U,n(X— S" (Cly, uClY, U ..UClY,_,))
=U,Nn(X— S Cl(Y,uY,U..UY,_))) ;
hence W, is the intersection of two SM*_open
sets, and is therefore S*_open .
Similar reasoning shows that v, is s"*_open for
eachn. SetH= uyW, and K = U, Y, , since H
and K are the union of S™*_open sets , then
are SM*_open. Suppose a € A, then a € U, for
some n, and

W, =U, — SM*(Cly, u ClY, U ...u ClY,_;). But for
any k, sM*cly, ¢ sMclLvy,
and SMClv,nA=¢. Therefore a & SM*ClY,
for any k. We have then that a € W,,. Therefore
Acuy W, =H.
Similarly B < K. In order to show that X is
SM* _normal, we now have merely to prove
H n K = ¢. Suppose that x€ H n K, then x €
W,nY, for some m and n. Suppose m >
n.Then x €Yy =V, —SM(CIW, U ..U CIW, U
CiW,); hence x could not be in CIW,, a
contradiction.
On the other hand m < n, then x e W, = U, —
sM*(Cly, v ..uClY,, U..UClY,_;). Thus «x¢
sM*Cly,,, again a contradiction .
There for H and K are disjoint S™*_open
subsets of X, which contain A and B,
respectively, and hence X is S¥* _normal.
On the other hand, by Remark 2.2 and
Proposition 2.1 we have the following stronger
result.
Corollary 2.3: As™* _ compact SY*T, space
is SM*T, space.
Proof: Since X isS"* _ compact then X is sM*
Lindeléf (by Remark 2.2), and any SM*_
compact, SM*T,_ space is SM*T,_space (by
Corollary 2.2),then X is SM*T,_space , hence X
is SM* _regular. Then Xis SM*_ normal (by
Proposition 2.1). Hence X is S™*T,_space.
Definition 2.6 : Let (X,7) and (VY,0) be two
topological spaces, thenX is said to be
SM* _homemorphic to Y iff there exist a
SM*_homemorphism function (fis bij , f is
SM* irresulte , f~! is SM*_irresulte) from (X,1)
onto (Y,o) and we denoted for that X =M* v,
Since any SM*_homemorphism
isSM* _irresulte (Theorem 1.2:[11]) we have
the following
Corollary 2.4 : If (X, 1) is S™*_compact then any
space S™*_homemorphic to X is SM*_compact.
Proposition 2.2 :Let f be a S”* _irresulte one-
one function from a S™*_compact space (X,1)
on to a ST, space (Y,0). Then f is a
SM*_homemorphism.
Proof: We must show that =1 is S™* _irresulte.
We use (Proposition8 Chapter4[6]) Let (X,7)
and (Y,o) be two topological spaces, then a
function from X to Y is continuous if and only if
given any closed subset F of v, f 1(F) is a
closed subset ofX.).SupposeF is any
SM* _cloced subset of X. Since F is S™*_ closed,
F is SM*_compact (Theorem 1.1[11]); hence
f(F) is a S™*_compact( Theorem 1.2[11]). Then
f(F) is a SM*_ compact subset of a S”*T,_ space
and is therefor $™* _closed(Theorem 2.1). But
f(F) = (f"Y7Y(F). We have therefore shown
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that if F is anyS™*_ closed subset ofX,
(f~V-Y(F) is a SM* _closed subset of Y. therefore
! is  SM _irresulte; hence f s
SM*_homemorphism.

Definition 2.7 : A function f: (X,7) — (Y,0) is
said to be asSM*_irresolte if for every Ue
SM oY), f7Y(U) is a_open set in X.

Corollary 2.5 : A as™*_ irresolute surjection
image of a_compact space isSM™*_compact
space .

Proof: Let f:(X,t) > (¥,0) be an
asM* _irresolute and surjection function, let
{Gi,i €1} be ans™*_ _open subset cover of Y.
Then f~1 (Gi),i € I} be an a_open sub set cover
of X, since X is a_compact , then there exist
finite sub set I_0 of I such that X =u
71 (Gi),i € I,}and hence Y =f(X) =u
{FFHGD),i €l,} cu{Gi,i €I} which is an
SM*__open cover of Y. Thus Y is $®*_compact.
Theorem 2.2 : The image of an a_compact
subset under on aSM*_irresulte function is
SM*_compact.

Proof : Let f:(X,7)— (Y,0) be an
aSM* _irresolute and surjection function, let A
be a_compact subset of X, then let {Ui,i €I}
be sM*_open set cover of f(A) such that f(A) c
u{U; i €I}. ThusAc f 1 (fA) c f1{U;i €
Mcu{f Wy ien, AcU{f WUiel
Since fis aSM*_irresolute, then {f 1 (U)); i €
I} €a0(X). Since A isa_compact and
{f~1(U); i €I} is an a_open cover of A. Then
there exists a finite sub set 1, of I such that
Acu{f-1(U)); i €1,}, this implies that f(A) c
U{ff t(U,); i €lyyc U{U; i €1,}. Then f(A) is
SM* _compact .

Definition 2.8 : A function f: (X,7) — (Y,0) is
said to be aS™*_continuous if for every U €
a0(Y) , f~Y(U) is SM*_open set in X.

Theorem 2.3 Let f:(X,t) — (Y,0) be
aSM* _continuous and surjective function, if X
is SM*_compact then Y is a_compact.

Proof : Let{V,; « € I} is a a_open set cover of Y,
since f is aSM*_continuous then {f~1(\,); a € I}
be SM* open set cover of X. Since X is
SM*_compact then there exists a finite sub set
I, of I such that X =u{f~'(\V,); a € I}, since f
is surjective , then f(x) =Y =u{V,; a € I,}. Then
Y is a_compact.

Definition 2.9 : A function f: (X,7) — (Y,0) is
said to be RSM*_ continuous if for everyV e
RO(Y) , f~H(V) € SM* 0(X).

Theorem 2.4 : Let f: (X,7) — (Y,0) be RSM*_
continuous and surjective function, if X is
SM*_compact then Y is nearly compact.

Proof : Let{V,; a« € I} is regular _open cover of
Y, since f is NS , then {f 1(V,); a€l} be
SM* open set cover of X , since X s
SM* _compact. Then there exists finite sub set
I, of I such that X =u{f~1(\,); « € I}, since f
is surjective, then f(x) =Y =uU{V,; a €I}, then
Y is nearly compact.
Definition 2.10 : A space (X,7) is called
SM*_|ocally indiscrete space if every S¥*_open
subset of X is SM*_closed.
Corollary 2.6 : For a topological space (X,1)
these phrases will be equal:
(1) X is SM*_compact.
(2) X is a SM* _(, space, i.e. V hs™*_closed
set is finite.
Remark : A subset B of a topological space
(X,7) is called S”*_closed, if every subset of B
is also s™*_closed in (X,7), then B is called
hereditarily s™*_closed (hs"*_closed).
Corollary 2.7 :Let O a subset of a topological
space (X,1) these phrases will be equal :
(1) O is hsM*_closed.
(2) N(X) nInt(cl(A)) = @, where N(X) point out
the set of nowhere dense singletons in X.
Corollary 2.8 : Let (X,7) by any space and let
(Y,0) by S™*_indiscrete. Let AcXxY and let
P:XxY — X denote the projection. Then
int(cl(A)) = int (cl(p(A))) XY .
Proposition 2.3: Let (X,,7,).co be a family of
pairwise disjoint topological spaces. For the
topological sum X =Y,,X, the following
conditions are equivalent:
(1) X is a SM*_compact space.
(2) Each X, is a S*_compact space and
Q| < X,
Theorem 2.6 : If (X,7) is S™*_compact and
(Y,0)is finite and S™*_locally indiscrete then
X xY is SM*_compact.
Proof : Since Y is a finite topological sum of
indiscrete spaces, by(Proposition 2.3) it
suffices to assume that Y is S™*_indiscrete.
Suppose that Ac XxY is infinite and
hsM*_closed. Then p(4) is infinite and hence,
by Corollary 2.6 and Corollary 2.7 we have
N(X) niInt(cl(p(4))) # @. Pick xENX)N
Int(cl(p(4))) and y e Y. Then {(x,y)} is nowhere
dense in X xY and by Corollary 2.8, we have
((x,y) € int(cl(4)), a contradiction to the
hsM* closednees of A. Thus XxY s
SM*_compact.
Conclusion: The simply* compact spaces was
introduced which are defined over simply*-
open set. In addition relation between the
simply* separation axioms and the
compactness were studied. It can be
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concluded that some of the theories to study Netsvetaev,and V.M. Kharlamov "Elementary
stacking more broadly is presented and it is topology" , american Mathematical Soc,
necessary to provide a lot of other theoretical 2008.

research to study the topic fully.
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