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ABSTRACT/ In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we 

study the relation between the simply* separation axioms and the compactness, in addition to introduce  a new types of functions known as 

𝛼𝑆𝑀∗ _irresolte , 𝛼𝑆𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  and  𝑅 𝑆𝑀∗ _ continuous, which are defined between two topological spaces. Keywords: simply* compact 

, SM∗ _regular , 𝑆𝑀∗ _𝑛𝑜𝑟𝑚𝑎𝑙, 𝑆𝑀∗  _  𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 , 𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚.  Key words : Breast cancer , Support Vector machine , Wisconsin Breast 

Cancer , Confusion Matrix, Information Gain. . RESUMEN/ En el presente trabajo, se introdujo un simple * espacios compactos 

definidos sobre simple * - conjunto de conocimientos previos y estudiamos la relación entre los axiomas de separación simple 

* y la compacidad, además de introducir un nuevo tipo de funciones conocidas como αS ^ (M *) _irresolte, αS ^ (M *) __ 

continuo y RS ^ (M *) _ continuo, que se definen entre dos espacios topológicos. 

Palabras clave: simplemente * compacto, SM∗ 
_regular, SM∗ 

_normal, SM∗ 
_ Lindelo ̈f, SM∗ 

_homemorphism. 

 
Introduction: 
In 1969 M. K. 𝑆𝑖𝑛𝑔𝑎𝑙 and 𝐴𝑠ℎ𝑎 Mathur 

presented the concept of nearly compact if 
(every regular open cover of 𝑋 has a finite sub 

cover)[13], which depends on the regular open 

set if (𝑆 = 𝑖𝑛𝑡(𝑐𝑙(𝑆))) was used for the first time 

in 1937 by M. H. Stone[14], it symbolizes by 
𝑅𝑂(𝑋).  In 1985 S. N. 𝑀𝑎𝑠ℎ𝑒𝑠ℎ𝑤𝑎𝑟𝑖  and S. S. 

Thakur presented the concept of  𝛼- compact 

if (for all 𝛼-open cover of 𝑋 has a finite sub 

cover)[5], which depends on the 𝛼-open sets 

 if (𝐾 ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐾)))) was used for the first 

time in  1965 by 𝑁𝑗𝑎𝑠𝑡𝑒𝑑 [9], it symbolizes by 

α𝑂(𝑋)). 
In 2007, the term of " simply* _compact" was 
used for the first time by M. El- 𝑆𝑎𝑦𝑒𝑑[11], he 

was adopted in his definition of anew set is said 
a simply*open set, it symbolizes by   𝑆𝑀∗ 𝑂(𝑋)), 

it is considered an amendment to the set 
simply open set the researcher A. 𝑁𝑒𝑢𝑏𝑟𝑢𝑛𝑛𝑜𝑣𝑒  

presented it in 1975[8] if (𝐻 = 𝑘 ∪  𝑁 such that 

𝐾 is open set and 𝑁 is 𝑛𝑜𝑤ℎ𝑒𝑟𝑒 𝑑𝑒𝑛𝑠𝑒 (𝑁 is 

𝑛𝑜𝑤ℎ𝑒𝑟𝑒 𝑑𝑒𝑛𝑠𝑒 if 𝑐𝑙(𝑖𝑛𝑡 𝑁) = ∅[15])), it 

symbolizes by 𝑆𝑀𝑂(𝑋). He also studied the 

basic concepts on this set and some of the  
separation axioms( for example  SM∗ _regular 
and 𝑆𝑀∗ _𝑛𝑜𝑟𝑚𝑎𝑙), and simply* - connect if ( a 

subset 𝑀 of apace(𝑋, 𝜏)  is said simply* connect 

relative to(𝑋, 𝜏)  if there are no subsets 𝐸 and 𝐹 

of 𝑋 such that  E and F are 𝑆𝑀∗ − 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑖. 𝑒 

(two nonempty subsets E and F in a topological 
space (𝑋, 𝜏) are said to be 𝑆𝑀∗ − 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 if 𝐸 ∩ 

 𝑆𝑀∗ cl(F)= ∅ =𝐹 ∩  𝑆𝑀∗ cl(F))  relative to(𝑋, 𝜏)  
and 𝑀 = 𝐸 ∪  𝐹) . In 2013  M. El- 𝑆𝑎𝑦𝑒𝑑 and I A. 

𝑁𝑜𝑎𝑚𝑎𝑛 presented a transformed definition of 

simply open set if (A subset O of a  topological 
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space (𝑋, 𝜏) is simply open set if 𝑖𝑛𝑡(𝑐𝑙(𝑂))  ⊆
 𝑐𝑙(𝑖𝑛𝑡(𝑂)) )[12]. The aim of this paper is to  

introduce some results on Simply* compact 

and present a new types of functions known as 

𝛼𝑆𝑀∗ _irresolte , 𝛼𝑆𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  and  𝑅 𝑆𝑀∗ _ 

continuous, which are defined between two 

topological spaces.  

1.Basic concepts 

Definition 1.1 :[11] A subset 𝐹 of a 

topological space (𝑋, 𝜏) is said to be  Simply* 

open set (for short, 𝑆𝑀∗ _open) set if 𝐹 ∈  {𝑋, ∅, 

𝐺 ∪ 𝑁; 𝐺 is a proper open  set and 𝑁 is a 

𝑛𝑜𝑤ℎ𝑒𝑟𝑒 𝑑𝑒𝑛𝑠𝑒 set}. 

It is symbolizes  by 𝑆𝑀∗O(X). The complement 

of an simply* open set is said to be simply* 
closed (for short, 𝑆𝑀∗ _closed) set and it 

symbolizes is  by 𝑆𝑀∗ 𝐶(𝑋). 
Remark 1.1 :[11] The following diagram 

show the relationship  between this species 

and  other species: 

Example 1.1 : Let 𝑋 = {1,2,3,4}, 𝜏 =
{𝑋, ∅, {1}, {2,3}, {1,2,3}} then the set {4} ∈ 𝑆𝑀𝑂(𝑋)  
but {4} ∉ 𝑆𝑀∗ O(X) .  

Definition 1.2 :[11] A space (𝑋, 𝜏) is said to be 

simply* compact (for short,  𝑆𝑀∗ _compact) if 

every 𝑆𝑀∗ _open cover of  𝑋 has a finite sub 

cover. 
Definition 1.3 :[11] A space (𝑋, 𝜏) is said to be 

SM∗ _regular if for every 𝐴 ∈ 𝑆𝑀∗ 𝐶(𝑋) ; 𝑥 ∉  𝐴  then 

there exist 𝑈, 𝑉 ∈ 𝑆𝑀∗ 𝑂(𝑋) ; 𝑈 ∩  𝑉 = ∅  such that 

𝑥 ∈  𝑈 and 𝐴 ⊂  𝑉. 
Definition 1.4 :[11] A space (𝑋, 𝜏) is said to be 

𝑆𝑀∗ _𝑛𝑜𝑟𝑚𝑎𝑙 if for every 𝑈, 𝑉 ∈ 𝑆𝑀∗ 𝐶(𝑋); 𝑈 ∩ 𝑉 =
∅  then there exist 𝐻, 𝐹 ∈ 𝑆𝑀∗ 𝑂(𝑋) such that 𝑈 ⊂
 𝐻 and 𝑉 ⊂   𝐹. 
Definition1.5 :[6] A space (𝑋, 𝜏) is said to be 

a 𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 space if every open cover of 𝑋 has a 

countable sub cover. 
Definition 1.6 :[11] If a function 𝑓: (𝑋, 𝜏) ⟶
(𝑌, 𝜎)  is said to be  𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒 if every  𝑈 ∈
𝑆𝑀∗ 𝑂(𝑌), 𝑓−1 (𝑈) ∈ 𝑆𝑀∗ 𝑂(𝑋). 
Definition 1.7:[11] For any topological space 

(𝑋, 𝜏), a subset 𝑁𝑥of 𝑋 is called  

𝑆𝑀∗ _neighborhood (for short,  𝑆𝑀∗ _𝑛𝑏𝑑) of a 

point 𝑥 ∈ 𝑋 if there exist 𝑆𝑀∗ _open  set 𝑊 such 

that  𝑥 ∈  𝑊 ⊂ 𝑁𝑥. The class of all 𝑆𝑀∗ _𝑛𝑏𝑑 of 

𝑥 is called 𝑆𝑀∗ _neighborhood system of 𝑥 and 

denoted by 𝑆𝑀∗ _𝑁𝑥. 

Definition 1.8 :[11] For any topological space 

(𝑋, 𝜏) and 𝐴 ⊆ 𝑋. We define simply* interior 

(resp. simply* closure) of A as the following:  
-𝑆𝑀∗_𝑖𝑛𝑡(𝐴) =∪ {𝐺 ⊂ 𝑋: 𝐺 ∈ 𝑆𝑀∗ 𝑂(𝑋), 𝐺 ⊂ 𝐴}  
-𝑆𝑀∗_𝑐𝑙(𝐴) =∩ {𝐹 ⊂ 𝑋 ∶ 𝐹 ∈ 𝑆𝑀∗ 𝐶(𝑋) 𝐹 ⊃ 𝐴}  
Theorem 1.1 :[11] A 𝑆𝑀∗ _𝑐𝑙𝑜𝑠𝑒𝑑 subset of 

𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡 space (𝑋, 𝜏) is 𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 
Theorem 1.2 :[11] If a function 𝑓: (𝑋, 𝜏) ⟶
(𝑌, 𝜎)  is 𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣 and 𝑋 is 

𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡 then 𝑌 is 𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 
2.Main results 

Definition 2.1 : A space (𝑋, 𝜏) is said to be 

𝑆𝑀∗ 𝑇1_space if for any two distinct points x and 

y of X, there exist 𝑈, 𝑉 ∈ 𝑆𝑀∗ 𝑂(𝑋) ;such that 

(𝑥 ∈  𝑈 𝛬 𝑦 ∉  𝑈) and (𝑥 ∉  𝑉  𝛬 𝑦 ∈  𝑉). 
Definition 2.2 : A space (𝑋, 𝜏) is said to be 

𝑆𝑀∗ 𝑇2_ 𝑠𝑝𝑎𝑐𝑒 if for all 𝑥, 𝑦 ∈  𝑋;  𝑥 ≠ 𝑦  then there 

exist 𝑈, 𝑉 ∈ 𝑆𝑀∗ 𝑂(𝑋) such that (𝑥 ∈  𝑈 𝛬 𝑦 ∈  𝑉) 
or (𝑥 ∈  𝑉  𝛬 𝑦 ∈  𝑈)and 𝑈 ∩  𝑉 = ∅. 
  Theorem 2.1 : Any 𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡  space of 

a 𝑆𝑀∗ 𝑇2_ space  is 𝑆𝑀∗ _𝑐𝑙𝑜𝑠𝑒𝑑. 

Proof: Let 𝐴 be a 𝑆𝑀∗ _compact subset of a 

𝑆𝑀∗ _𝑇2 space(𝑋, 𝜏),and suppose 𝑥 ∈  𝑋 − 𝐴. We 

must find a  𝑆𝑀∗ _neighborhood of 𝑥 which does 

not meet 𝐴 (thus showing that 𝑋 − 𝐴  is 

𝑆𝑀∗ _open), since 𝑋 is 𝑆𝑀∗ _𝑇2 space, given any 

𝑦 ∈  𝐴, there are 𝑆𝑀∗ _neighborhoods 𝑈𝑦  and 𝑉𝑦  

of 𝑥 and 𝑦, respectively such that 𝑈𝑦  ∩  𝑉𝑦  = ∅. 

Then {𝑉𝑦}, 𝑦 ∈  𝐴 is an  𝑆𝑀∗ _open cover of 𝐴. 

Hence there are finitely many 𝑦 say  𝑦1, 𝑦2 , … , 𝑦𝑛  

such that {𝑉𝑦1
, … , 𝑉𝑦𝑛

} is an  𝑆𝑀∗ _open cover of 

𝐴. Set 𝑈 = 𝑈𝑦1
∩ … ∩ 𝑈𝑦𝑛  and 𝑉 = 𝑉𝑦1

∪ … ∪ 𝑉𝑦𝑛 

then 𝑥 ∈  𝑈 , 𝐴 ⊂  𝑉 and 𝑈 ∩  𝑉 = ∅ and hence 𝑈 

is 𝑆𝑀∗ _neighborhood of 𝑥 such that 𝑈 ∩ 𝐴 = ∅. 
Then 𝐴 is 𝑆𝑀∗ _closed . 

Definition 2.3 : A space (𝑋, 𝜏) is said to be 

𝑆𝑀∗ 𝑇3_space if  𝑋 is both SM∗ _regular and 

𝑆𝑀∗ 𝑇1_space. 

Definition 2.4 : A space (𝑋, 𝜏) is said to be 

𝑆𝑀∗ 𝑇4_space if  𝑋 is both SM∗ _ 𝑛𝑜𝑟𝑚𝑎𝑙 and 

𝑆𝑀∗ 𝑇1_space. 

Remark 2.1 :The following diagram show the 

relation between the types of Separation 

Axioms 
 𝑆𝑀∗ 𝑇4_space ⟶ 𝑆𝑀∗ 𝑇3_space  ⟶ 𝑆𝑀∗ T2_ space 

⟶ 𝑆𝑀∗ 𝑇1_space  

Diagram 2.1 

 

Combining Theorem(1.1) and (2.1) we obtain 

the following. 

Corollary 2.1 : A subset of a 𝑆𝑀∗  _ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 
and 𝑆𝑀∗ 𝑇2_ space is 𝑆𝑀∗  _ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 if and only if 

it is 𝑆𝑀∗  _𝑐𝑙𝑜𝑠𝑒𝑑. 
Corollary 2.2 : A 𝑆𝑀∗  _ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and 𝑆𝑀∗ 𝑇2_ 

space is 𝑆𝑀∗ 𝑇3 _space. 
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Proof: Let 𝐴 ⊂  𝑋  by Theorem(2.1) 𝐴 is 𝑆𝑀∗  

_𝑐𝑙𝑜𝑠𝑒𝑑, since there exist 𝑈, 𝑉 ∈ 𝑆𝑀∗ 𝑂(𝑋) such 

that  𝑥 ∈  𝑈 , 𝐴 ⊂  𝑉 and 𝑈 ∩  𝑉 = ∅ (by proof 

Theorem(2.1)), hence 𝑋 is SM∗ _regular. Since 𝑋 

is 𝑆𝑀∗ 𝑇2_ space, by Diagram (2.1) 𝑋 

is 𝑆𝑀∗ 𝑇1_space.  Hence 𝑋 is 𝑆𝑀∗ 𝑇3_space . 

Definition 2.5 : A space (𝑋, 𝜏) is said to be 

a 𝑆𝑀∗  _  𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 space if every 𝑆𝑀∗  _  𝑜𝑝𝑒𝑛 cover 

of 𝑋 has a countable sub cover. 

Remark 2.2 : Any 𝑆𝑀∗  _ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 is 𝑆𝑀∗  _  

𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓. 

Proposition 2.1 : A SM∗ _regular   𝑆𝑀∗  _  

𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 is  SM∗ _ 𝑛𝑜𝑟𝑚𝑎𝑙. 
Proof: Let (𝑋, 𝜏) be SM∗ _regular 𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 space 

and let 𝐴, 𝐵 be disjoint  𝑆𝑀∗ _closed subsets of 

𝑋. If  𝑥 ∈ 𝐴 ,then 𝑋 − 𝐵 is a  𝑆𝑀∗ _neighborhood 

of 𝑥. Since 𝑋 is   SM∗ _regular, there is a 

neighborhood 𝑈𝑥 of 𝑥 such that  𝑆𝑀∗ 𝐶𝑙 𝑈𝑥 ⊂ 𝑋 −
𝐵(a space (𝑋, 𝜏) is SM∗ _regular if and only if given 

any  𝑥 ∈ 𝑋 and any 𝑆𝑀∗ _neighborhood 𝑈 of  𝑥, 

there is a 𝑆𝑀∗ _neighborhod 𝑉 of 𝑥 such that 

𝑆𝑀∗ 𝐶𝑙𝑉  ⊂  𝑈 ). 

Similarly, if 𝑥 ∈ 𝐵, there is a 

𝑆𝑀∗ _neighborhood 𝑈𝑥 of  𝑥 such that 𝑆𝑀∗ 𝐶𝑙 𝑈𝑥 ⊂
 𝑋 − 𝐴. 

If 𝑥 is not an element of either 𝐴 or 𝐵, then 𝑋 −
(𝐴 ∪ 𝐵) is a 𝑆𝑀∗ _neighborhood of 𝑥; hence we 

may find a 𝑆𝑀∗ _neighborhood 𝑈𝑥 of 𝑥 such that 

𝑆𝑀∗ 𝐶𝑙 𝑈𝑥 ⊂  𝑋 − (𝐴 ∪ 𝐵)(and thus 𝑆𝑀∗ 𝐶𝑙 𝑈𝑥 ∩ (𝐴 ∪
𝐵) = 𝜙). 

The family of 𝑈𝑥 for each   𝑥 ∈ 𝑋 is an open 

cover for 𝑋. Since 𝑋 is  𝑆𝑀∗ _𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 , this 

𝑆𝑀∗ _cover has a countable sub cover{𝑈𝑥𝑛; 

𝑛 =1,2,3,…}. Let 𝑈1, 𝑈2, … be the 𝑈𝑥𝑛(relabeled 

for convenience) which meet 𝐴, and let 𝑉1, 𝑉2, 

… be the 𝑉𝑥𝑛 which meet 𝐵. 

Then for each positive integer n , 𝑆𝑀∗ 𝐶𝑙 𝑈𝑛 ∩
𝐵 = 𝜙 and 𝑆𝑀∗ 𝐶𝑙 𝑉𝑛 ∩ 𝐴 = 𝜙; moreover 𝐴 ⊂
 ∪𝑁 𝑈𝑛 and 𝐵 ⊂  ∪𝑁 𝑉𝑛. Define 𝑊1 = 𝑈1 and set 

𝑌1 = 𝑉1 − 𝑆𝑀∗ 𝐶𝑙 𝑊1.  

Let 𝑊2 = 𝑈2 − 𝑆𝑀∗ 𝐶𝑙 𝑌1 and 𝑌2 = 𝑉2 − (𝑆𝑀∗ 𝐶𝑙 𝑊1 ∪
𝑆𝑀∗ 𝐶𝑙 𝑊2). Suppose 𝑊𝑛 and 𝑌𝑛 have been 

defined, then set 𝑊𝑛+1 = 𝑈𝑛+1 −  𝑆𝑀∗ (𝐶𝑙𝑌1 ∪
𝐶𝑙𝑌2 ∪ … ∪ 𝐶𝑙𝑌𝑛) and 

 𝑌𝑛+1 = 𝑉𝑛+1 −  𝑆𝑀∗ (𝐶𝑙 𝑊1 ∪ 𝐶𝑙 𝑊2 ∪ … ∪ 𝐶𝑙 𝑊𝑛+1), 𝑊𝑛 

is always an open set since 
 𝑊𝑛 = 𝑈𝑛 ∩ (𝑋 −  𝑆𝑀∗ (𝐶𝑙𝑌1 ∪ 𝐶𝑙𝑌2 ∪ … ∪ 𝐶𝑙𝑌𝑛−1)) 
        =𝑈𝑛 ∩ (𝑋 −  𝑆𝑀∗ 𝐶𝑙(𝑌1 ∪ 𝑌2 ∪ … ∪ 𝑌𝑛−1)) ; 

hence 𝑊𝑛 is the intersection  of two  𝑆𝑀∗ _open 

sets, and is therefore  𝑆𝑀∗ _open . 

Similar reasoning shows that 𝑌𝑛 is  𝑆𝑀∗ _open for 

each n. Set 𝐻 =  ∪𝑁 𝑊𝑛  and 𝐾 =  ∪𝑁 𝑌𝑛 , since 𝐻 

and 𝐾 are the union of 𝑆𝑀∗ _open sets , then 

are 𝑆𝑀∗ _open. Suppose 𝑎 ∈ 𝐴, then 𝑎 ∈ 𝑈𝑛 for 

some n, and  

 𝑊𝑛 = 𝑈𝑛 − 𝑆𝑀∗ (𝐶𝑙𝑌1 ∪ 𝐶𝑙𝑌2 ∪ … ∪ 𝐶𝑙𝑌𝑛−1). But for 

any k, 𝑆𝑀∗ 𝐶𝑙 𝑌𝑘 ⊂ 𝑆𝑀∗ 𝐶𝑙 𝑉𝑘 

 and 𝑆𝑀∗ 𝐶𝑙 𝑉𝑘 ∩ 𝐴 = 𝜙. Therefore 𝑎 ∉ 𝑆𝑀∗ 𝐶𝑙𝑌𝑘  

for any k. We have then that 𝑎 ∈ 𝑊𝑛. Therefore 

A⊂ ∪𝑁 𝑊𝑛 = 𝐻. 

Similarly B ⊂  K. In order to show that X is 

 𝑆𝑀∗ _normal, we now have merely to prove 

𝐻 ∩ 𝐾 = 𝜙. Suppose that 𝑥 ∈  𝐻 ∩ 𝐾, then 𝑥 ∈
 𝑊𝑛 ∩ 𝑌𝑚 for some m and n. Suppose 𝑚 ≥
 𝑛.Then 𝑥 ∈ 𝑌𝑚 = 𝑉𝑚 − 𝑆𝑀∗ (𝐶𝑙 𝑊1 ∪ … ∪ 𝐶𝑙𝑊𝑛 ∪
𝐶𝑙𝑊𝑚); hence x could not be in 𝐶𝑙𝑊𝑛, a 

contradiction. 
 On  the other hand 𝑚 <  𝑛, then 𝑥 ∈ 𝑊𝑛 = 𝑈𝑛 −
 𝑆𝑀∗ (𝐶𝑙𝑌1 ∪ … ∪ 𝐶𝑙𝑌𝑚 ∪ … ∪ 𝐶𝑙𝑌𝑛−1). Thus 𝑥 ∉
𝑆𝑀∗ 𝐶𝑙𝑌𝑚, again a contradiction . 

There for 𝐻 and 𝐾 are disjoint  𝑆𝑀∗ _open 

subsets of 𝑋, which contain 𝐴 and 𝐵, 

respectively, and hence 𝑋 is 𝑆𝑀∗ _normal.  

On the other hand, by Remark 2.2 and 

Proposition 2.1 we have the following stronger 

result. 

Corollary 2.3: A 𝑆𝑀∗  _ compact  𝑆𝑀∗ 𝑇2_ space 

is 𝑆𝑀∗ 𝑇4_space. 

Proof: Since 𝑋 is 𝑆𝑀∗  _ compact then 𝑋 is 𝑆𝑀∗  

_  𝐿𝑖𝑛𝑑𝑒𝑙�̈�𝑓 (by Remark 2.2), and any 𝑆𝑀∗ _  

compact, 𝑆𝑀∗ 𝑇2_ space is 𝑆𝑀∗ 𝑇3_space (by 

Corollary 2.2),then 𝑋 is 𝑆𝑀∗ 𝑇3_space , hence 𝑋 

is SM∗ _regular. Then 𝑋 is SM∗ _ 𝑛𝑜𝑟𝑚𝑎𝑙 (by 

Proposition 2.1). Hence 𝑋 is 𝑆𝑀∗ 𝑇4_space. 

Definition 2.6 : Let (𝑋, 𝜏) and (𝑌,𝜎) be two 

topological spaces, then 𝑋 is said to be 

𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑐 to 𝑌 iff there exist a 

𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 function (𝑓 is 𝑏𝑖𝑗 , 𝑓 is 

𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒 , 𝑓−1 is 𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒) from (𝑋, 𝜏) 
onto (𝑌,𝜎) and we denoted for that    𝑋 ≅𝑀∗ 𝑌. 

Since any 𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 

is 𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒 (Theorem 1.2:[11]) we have 

the following 

Corollary 2.4 : If (𝑋, 𝜏) is 𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡 then any 

space 𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑐 to 𝑋 is 𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 
Proposition 2.2 :Let f be a 𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒  one-

one function from a 𝑆𝑀∗ _compact space (𝑋, 𝜏) 
on to a 𝑆𝑀∗ 𝑇2_ space (𝑌,𝜎). Then f is a 

𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚. 

Proof: We must show that  𝑓−1 is 𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒. 

We use (Proposition8 Chapter4[6])  Let (𝑋, 𝜏) 
and (𝑌,𝜎) be two topological spaces, then a 

function from 𝑋 to 𝑌 is continuous if and only if 

given any closed subset 𝐹 of 𝑌, 𝑓−1(F) is a 

closed subset of 𝑋.).Suppose 𝐹 is any 

𝑆𝑀∗ _cloced subset of 𝑋. Since 𝐹 is 𝑆𝑀∗ _ closed, 

𝐹 is 𝑆𝑀∗ _compact (Theorem 1.1[11]); hence 

f(F) is a 𝑆𝑀∗ _compact( Theorem 1.2[11]). Then 

f(F) is a 𝑆𝑀∗ _ compact subset of a 𝑆𝑀∗ 𝑇2_ space 

and is therefor 𝑆𝑀∗ _closed(Theorem 2.1). But 

𝑓(𝐹) = (𝑓−1)−1(𝐹). We have  therefore shown 
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that if 𝐹 is any 𝑆𝑀∗ _ closed subset of 𝑋, 

(𝑓−1)−1(F) is a 𝑆𝑀∗ _𝑐𝑙𝑜𝑠𝑒𝑑 subset of 𝑌. therefore  

 𝑓−1 is 𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒; hence f is 

𝑆𝑀∗ _ℎ𝑜𝑚𝑒𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚. 

Definition 2.7 : A function 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎)  is 
said to be α𝑆𝑀∗ _irresolte if for every 𝑈 ∈
𝑆𝑀∗ 𝑂(Y) , 𝑓−1(𝑈) is 𝛼_open set in 𝑋. 
Corollary 2.5 : A α 𝑆𝑀∗ _ irresolute surjection 

image of α_compact space is 𝑆𝑀∗ _compact 

space . 
Proof: Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎) be an  

α𝑆𝑀∗ _irresolute and  surjection function, let  

{𝐺𝑖, 𝑖 ∈ 𝐼} be an𝑆𝑀∗ _ _open subset cover of Y. 

Then 𝑓−1 (𝐺𝑖), 𝑖 ∈ 𝐼} be an α_open sub set cover 

of X, since X is α_compact , then there exist 
finite sub set I_0  of I such that 𝑋 =∪
 𝑓−1 (𝐺𝑖), 𝑖 ∈ 𝐼0} and hence 𝑌 = 𝑓(𝑋)  =∪
{𝑓(𝑓−1 ) (𝐺𝑖)) , 𝑖 ∈ 𝐼0} ⊂ ∪ {𝐺𝑖, 𝑖 ∈ 𝐼0 } which is an 

𝑆𝑀∗ __open cover of 𝑌. Thus 𝑌 is 𝑆𝑀∗ _compact. 

Theorem 2.2 : The image of an 𝛼_compact 

subset under on 𝛼𝑆𝑀∗ _𝑖𝑟𝑟𝑒𝑠𝑢𝑙𝑡𝑒 function is 

𝑆𝑀∗ _compact. 

Proof : Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎)  be  an 

𝛼𝑆𝑀∗ _irresolute and  surjection function, let A 

be 𝛼_compact subset of 𝑋, then let  {𝑈𝑖, 𝑖 ∈ 𝐼} 
be  𝑆𝑀∗ _open  set cover of f(A) such that   f(A) ⊂ 

∪{𝑈𝑖;  𝑖 ∈ 𝐼}. Thus A ⊂ 𝑓−1 (𝑓(𝐴)) ⊂ 𝑓−1 (∪{𝑈𝑖;  𝑖 ∈
𝐼}) ⊂ ∪{𝑓−1 (𝑈𝑖);  𝑖 ∈ 𝐼}, A ⊂ ∪{𝑓−1 (𝑈𝑖);  𝑖 ∈ 𝐼} . 

Since f is   𝛼𝑆𝑀∗ _irresolute, then  {𝑓−1 (𝑈𝑖);  𝑖 ∈
𝐼} ∈ 𝛼𝑂(𝑋). Since A is 𝛼_𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and 

{𝑓−1 (𝑈𝑖);  𝑖 ∈ 𝐼} is an 𝛼_open cover of A. Then 

there exists a finite sub set  𝐼0 of I such that 

A⊂∪{𝑓−1 (𝑈𝑖);  𝑖 ∈ 𝐼0}, this implies that f(A) ⊂ 

∪{𝑓𝑓−1 (𝑈𝑖);  𝑖 ∈ 𝐼0} ⊂  ∪{𝑈𝑖;  𝑖 ∈ 𝐼0}. Then f(A) is 

𝑆𝑀∗ _𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . 
Definition 2.8 : A function 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎)  is 
said to be 𝛼𝑆𝑀∗ __continuous  if for every 𝑈 ∈
𝛼𝑂(Y) , 𝑓−1(𝑈) is 𝑆𝑀∗ __open set in 𝑋. 
Theorem 2.3 : Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎)  be 

𝛼𝑆𝑀∗ __continuous and  𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 function, if 𝑋 

is 𝑆𝑀∗ _compact then 𝑌 is 𝛼_compact. 

Proof : Let{𝑉𝛼;  𝛼 ∈ 𝐼} is a 𝛼_open set cover of 𝑌, 

since f is  𝛼𝑆𝑀∗ _continuous then {𝑓−1(𝑉𝛼);  𝛼 ∈ 𝐼} 
be 𝑆𝑀∗ _open set cover of 𝑋. Since 𝑋 is 

𝑆𝑀∗ _compact then there exists a finite sub set  

𝐼0 of  I  such that  𝑋 =∪ {𝑓−1(𝑉𝛼);  𝛼 ∈ 𝐼0}, since f 

is 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 , then 𝑓(𝑥) = 𝑌 =∪ {𝑉𝛼;  𝛼 ∈ 𝐼0}. Then 

𝑌 is 𝛼_compact.  

Definition 2.9 : A function 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎)  is 
said to be 𝑅 𝑆𝑀∗ _ continuous if for every 𝑉 ∈
𝑅𝑂(𝑌) , 𝑓−1(𝑉) ∈ 𝑆𝑀∗ 𝑂(𝑋). 
Theorem 2.4 : Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎)  be 𝑅 𝑆𝑀∗ _ 

continuous and  𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 function, if 𝑋 is 

𝑆𝑀∗ _compact then 𝑌 is nearly compact. 

Proof : Let{𝑉𝛼;  𝛼 ∈ 𝐼} is regular _open  cover of 

𝑌, since f is NS , then {𝑓−1(𝑉𝛼);  𝛼 ∈ 𝐼} be 

𝑆𝑀∗ _open set cover of 𝑋 , since 𝑋 is 

𝑆𝑀∗ _compact. Then there exists finite sub set  

𝐼0 of I such that 𝑋 =∪ {𝑓−1(𝑉𝛼);  𝛼 ∈ 𝐼0}, since f 

is 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒, then 𝑓(𝑥) = 𝑌 = ∪ {𝑉𝛼;  𝛼 ∈ 𝐼0}, then 

𝑌 is nearly compact. 

Definition 2.10 : A space (𝑋, 𝜏) is called 

𝑆𝑀∗_locally indiscrete space if every 𝑆𝑀∗_open 

subset of 𝑋 is 𝑆𝑀∗_closed. 

Corollary 2.6 : For a topological space (𝑋, 𝜏) 
these phrases will be equal: 
(1) 𝑋 is 𝑆𝑀∗_𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 
(2) 𝑋 is a 𝑆𝑀∗ _𝐶3 space, i.e. ∀ h𝑆𝑀∗_closed 

set is finite. 

Remark : A subset B of a topological space 

(𝑋, 𝜏) is called 𝑆𝑀∗_closed, if every subset of B 

is also 𝑆𝑀∗_closed in (𝑋, 𝜏), then B is called 

hereditarily 𝑆𝑀∗_closed (h𝑆𝑀∗_closed).   

Corollary 2.7 :Let O a subset of a topological 

space (𝑋, 𝜏) these phrases will be equal :  

(1) O is h𝑆𝑀∗_closed. 

(2) 𝑁(𝑋) ∩ 𝐼𝑛𝑡(𝑐𝑙(𝐴)) = ∅, where  𝑁(𝑋) point out 

the set of nowhere dense singletons in 𝑋. 

Corollary 2.8 : Let (𝑋, 𝜏)  by any space and let 

(𝑌, 𝜎) by 𝑆𝑀∗_indiscrete. Let 𝐴 ⊆ 𝑋 × 𝑌  and let 

P: 𝑋 × 𝑌 ⟶ 𝑋 denote the projection. Then 

𝑖𝑛𝑡(𝑐𝑙(𝐴)) = 𝑖𝑛𝑡 (𝑐𝑙(𝑝(𝐴))) × 𝑌 . 

Proposition 2.3: Let (𝑋𝛼 , 𝜏𝛼)𝛼∈𝛺 be a family of 

pairwise disjoint topological spaces. For the 
topological sum 𝑋 = ∑𝛼∈𝛺𝑋𝛼 the following 

conditions are equivalent: 

(1) 𝑋 is a 𝑆𝑀∗_compact space. 

(2) Each 𝑋𝛼 is a 𝑆𝑀∗_compact space and 

│Ω│< ℵ0. 

Theorem 2.6 : If (𝑋, 𝜏) is 𝑆𝑀∗_compact and 

(𝑌, 𝜎) is finite and 𝑆𝑀∗_locally indiscrete then 

𝑋 × 𝑌 is 𝑆𝑀∗_compact. 

Proof : Since 𝑌 is a finite topological sum of 

indiscrete spaces, by(Proposition 2.3) it 
suffices to assume that 𝑌 is 𝑆𝑀∗_indiscrete. 

Suppose that     𝐴 ⊆ 𝑋 × 𝑌 is infinite and 

h𝑆𝑀∗_closed. Then 𝑝(𝐴) is infinite and hence, 

by Corollary 2.6 and Corollary 2.7 we have 
𝑁(𝑋) ∩ 𝐼𝑛𝑡(𝑐𝑙(𝑝(𝐴))) ≠ ∅. Pick  𝑥 ∈ 𝑁(𝑋) ∩
𝐼𝑛𝑡(𝑐𝑙(𝑝(𝐴))) and 𝑦 ∈ 𝑌. Then {(𝑥, 𝑦)} is nowhere 

dense in 𝑋 × 𝑌 and by Corollary 2.8, we have 

((𝑥, 𝑦) ∈ 𝑖𝑛𝑡(𝑐𝑙(𝐴)), a contradiction to the 

h𝑆𝑀∗_𝑐𝑙𝑜𝑠𝑒𝑑𝑛𝑒𝑒𝑠 of 𝐴. Thus 𝑋 × 𝑌 is 

𝑆𝑀∗_compact. 

Conclusion: The simply* compact spaces was 

introduced which are defined over simply*- 

open set. In addition relation between the 

simply* separation axioms  and the 

compactness were studied.  It can be 
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concluded that some of the theories to study 

stacking more broadly is presented and it is 

necessary to provide a lot of other theoretical 

research to study the topic fully. 
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