

ABSTRACT/ In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as aS^M*_irresolte, aS^{M*}_continuous and RS^{M*}_continuous, which are defined between two topological spaces. Keywords: simply^{*} compact , S^M*_regular , S^{M*}_normal, S^{M*} _ Lindelöf , S^{M*}_homemorphism. Key words : Breast cancer , Support Vector machine , Wisconsin Breast Cancer , Confusion Matrix, Information Gain. . RESUMEN/ En el presente trabajo, se introdujo un simple * espacios compactos definidos sobre simple * - conjunto de conocimientos previos y estudiamos la relación entre los axiomas de separación simple * y la compacidad, además de introducir un nuevo tipo de funciones conocidas como aS ^ (M *) _irresolte, aS ^ (M *) _ continuo y RS \wedge (M \ast) _ continuo, que se definen entre dos espacios topológicos.

Palabras clave: simplemente * compacto, $\rm S^{M*}$ _regular, $\rm S^{M*}$ _normal, $\rm S^{M*}$ _Lindelo \degree f, $\rm S^{M*}$ _homemorphism.

Introduction:

In 1969 M. K. Singal and Asha Mathur presented the concept of nearly compact if (every regular open cover of X has a finite sub cover)[13], which depends on the regular open set if $(S = int(cl(S)))$ was used for the first time in 1937 by M. H. Stone[14], it symbolizes by $RO(X)$. In 1985 S. N. *Masheshwari* and S. S. Thakur presented the concept of α - compact if (for all α -open cover of X has a finite sub cover)[5], which depends on the α -open sets if $(K \subset int(cl(int(K))))$ was used for the first time in 1965 by $Njasted$ [9], it symbolizes by $aO(X)$).

In 2007, the term of " simply* _compact" was used for the first time by M. El- $Sayed[11]$, he was adopted in his definition of anew set is said a simply*open set, it symbolizes by $S^{M*} O(X)$,

 S^{M*} cl(F)= \emptyset = F \cap S^{M*} cl(F)) relative to(*X*, τ) \cong and $M = E \cup F$). In 2013 M. El- *Sayed* and I A. \cong *Noaman* presented a transformed definition of \cong simply open set if (A subset O of a topol it is considered an amendment to the set simply open set the researcher A. Neubrunnove presented it in 1975[8] if $(H = k \cup N$ such that K is open set and N is nowhere dense (N is *nowhere dense* if $cl(int N) = \emptyset$ [15])), it symbolizes by $S^{M}O(X)$. He also studied the basic concepts on this set and some of the separation axioms(for example S^{M*} _regular and S^{M*} _normal), and simply* - connect if (a subset *M* of apace(X, τ) is said simply* connect relative to(X, τ) if there are no subsets E and F of X such that E and F are S^{M*} – separated i.e (two nonempty subsets E and F in a topological space (X, τ) are said to be S^{M*} – separated if E \cap S^{M*} cl(F) = \emptyset = F \cap S^{M*} cl(F)) relative to(X, τ) and $M = E \cup F$). In 2013 M. El- Sayed and IA. Noaman presented a transformed definition of

space (X, τ) is simply open set if $int(cl(0)) \subseteq$ $cl(int(0))$)[12]. The aim of this paper is to introduce some results on Simply* compact and present a new types of functions known as αS^{M*} _irresolte , αS^{M*} _continuous and RS M* _ continuous, which are defined between two topological spaces.

1.Basic concepts

Definition 1.1 :[11] A subset F of a topological space (X, τ) is said to be Simply* open set (for short, S^{M*} _open) set if $F \in \{X, \emptyset, \emptyset\}$ $G \cup N$; G is a proper open set and N is a nowhere dense set }.

It is symbolizes by $S^{M*}O(X)$. The complement of an simply* open set is said to be simply* closed (for short, S^{M*} closed) set and it symbolizes is by $S^{M*} C(X)$.

Remark 1.1 :[11] The following diagram show the relationship between this species and other species:

Regular open $(RO(X)) \rightarrow \alpha$ -open $(\alpha O(X)) \rightarrow$ simply open($S^M O(X)$)

$$
\downarrow
$$

Simply* open $(S^{M*}O(X))$

Diagram 1.1

Example 1.1 : Let $X = \{1,2,3,4\}$, $\tau =$ $\{X, \emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}\$ then the set $\{4\} \in S^{M}O(X)$ $but \{4\} \notin S^{M*}O(X)$.

Definition 1.2: [11] A space (X, τ) is said to be simply* compact (for short, S^{M*} compact) if every S^{M*} open cover of X has a finite sub cover.

Definition 1.3 : [11] A space (X, τ) is said to be S^{M*} ₋regular if for every $A \in S^{M*}$ $C(X)$; $x \notin A$ then there exist $U, V \in S^{M*} O(X)$; $U \cap V = \emptyset$ such that $x \in U$ and $A \subset V$.

Definition 1.4 : [11] A space (X, τ) is said to be S^{M*} _normal if for every $U, V \in S^{M*}$ $C(X)$; $U \cap V =$ \emptyset then there exist $H, F \in S^{M*}O(X)$ such that $U \subset$ *H* and $V \subset F$.

Definition1.5 :[6] A space (X, τ) is said to be a Lindelöf space if every open cover of X has a countable sub cover.

Definition 1.6 :[11] If a function $f: (X, \tau) \rightarrow$ (Y, σ) is said to be S^{M*} *irresulte* if every $U \in$ $S^{M*} O(Y), f^{-1}(U) \in S^{M*} O(X).$

Definition 1.7:[11] For any topological space (X, τ) , a subset N_x of X is called S^{M*} _neighborhood (for short, S^{M*} _nbd) of a point $x \in X$ if there exist S^{M*} _open set W such that $x \in W \subset N_x$. The class of all S^{M*} _{_nbd} of x is called S^{M*} neighborhood system of x and denoted by S^{M*} $_N_x$.

Definition 1.8 :[11] For any topological space (X, τ) and $A \subseteq X$. We define simply* interior (resp. simply* closure) of A as the following: $-S^{M*}$ _— $int(A) = \cup \{G \subset X : G \in S^{M*} \cup (X), G \subset A\}$ $-S^{M*}_cl(A) = \cap \{ F \subset X : F \in S^{M*} C(X) \ F \supseteq A \}$

Theorem 1.1 $:[11]$ A S^{M*} closed subset of S^{M*} _compact space (X, τ) is S^{M*} _compact.

Theorem 1.2 :[11] If a function $f: (X, \tau) \rightarrow$ (Y, σ) is S^{M*} *irresulte surjectiv* and X is S^{M*} _compact then Y is S^{M*} _compact.

2.Main results

Definition 2.1 : A space (X, τ) is said to be S^{M*} T_1 space if for any two distinct points x and y of X, there exist $U, V \in S^{M*}O(X)$; such that $(x \in U \land y \notin U)$ and $(x \notin V \land y \in V)$.

Definition 2.2 : A space (X, τ) is said to be $S^{M*}T_{2}$ space if for all $x, y \in X$; $x \neq y$ then there exist $U, V \in S^{M*} O(X)$ such that $(x \in U \land y \in V)$ or $(x \in V \land y \in U)$ and $U \cap V = \emptyset$.

Theorem 2.1 : Any S^{M*} *compact* space of a $S^{M \ast}$ $T_{2\perp}$ space $% S^{M \ast}$ is $S^{M \ast}$ $_closed$.

Proof: Let A be a S^{M*} compact subset of a S^{M*} ₋ T_2 space(X, τ), and suppose $x \in X - A$. We must find a S^{M*} neighborhood of x which does not meet *A* (thus showing that $X - A$ $S^{M\ast}$ _open), since X is $S^{M\ast}$ _ T_2 space, given any $y \in A$, there are $S^{M \ast}$ _neighborhoods $U_y \,$ and $V_y \,$ of x and y, respectively such that $U_y \cap V_y = \emptyset$. Then $\{V_y\}$, $y \in A$ is an S^{M*} open cover of A. Hence there are finitely many y say $y_1, y_2, ..., y_n$ such that $\{V_{y_1},...,V_{y_n}\}$ is an S^{M*} open cover of A. Set $U = U_{y_1} \cap ... \cap U_{y_n}$ and $V = V_{y_1} \cup ... \cup V_{y_n}$ then $x \in U$, $A \subset V$ and $U \cap V = \emptyset$ and hence U is S^{M*} _neighborhood of x such that $U \cap A = \emptyset$. Then A is S^{M*} _closed .

Definition 2.3 : A space (X, τ) is said to be $S^{M*}T_3$ _space if X is both S^{M*} _{-regular} and S^{M*} $T_{\mathbb{1}}$ space.

Definition 2.4 : A space (X, τ) is said to be $S^{M*}T_4$ _space if X is both S^{M*} ₋ normal and S^{M*} $T_{\mathbb{1}}$ space.

Remark 2.1 :The following diagram show the relation between the types of Separation Axioms

 $S^{M*}T_4$ _space → $S^{M*}T_3$ _space → $S^{M*}T_2$ _ space \longrightarrow $S^{M*}\,T_{1_}$ space

Diagram 2.1

Combining Theorem (1.1) and (2.1) we obtain the following.

Corollary 2.1 : A subset of a S^{M*} _compact and S^{M*} $T_{2\perp}$ space is S^{M*} \perp compact if and only if it is S^{M*} _closed.

Corollary 2.2 : A S^{M*} _ compact and $S^{M*}T_{2}$ _ space is $S^{M*}T_3$ _space.

Proof: Let $A \subset X$ by Theorem(2.1) A is S^{M*} $_{closed}$, since there exist $U, V \in S^{M*}O(X)$ such that $x \in U$, $A \subset V$ and $U \cap V = \emptyset$ (by proof Theorem(2.1)), hence X is S^{M*} regular. Since X is $S^{M*}T_{2}$ space, by Diagram (2.1) X is S^{M*} T_1 space. Hence X is S^{M*} T_3 space.

Definition 2.5 : A space (X, τ) is said to be a S^{M*} _ Lindelöf space if every S^{M*} _ open cover of X has a countable sub cover.

Remark 2.2 : Any S^{M*} _ compact is S^{M*} _ Lindelöf.

Proposition 2.1 : A S^{M*} regular S^{M*} _ Lindelöf is S^{M*} normal.

Proof: Let (X, τ) be S^{M*} regular *Lindelöf* space and let A, B be disjoint S^{M*} closed subsets of X. If $x \in A$, then $X - B$ is a S^{M*} neighborhood of x. Since X is S^{M*} regular, there is a neighborhood U_x of x such that S^{M*} Cl $U_x \subset X$ – B(a space (X, τ) is S^{M*} regular if and only if given any $x \in X$ and any S^{M*} neighborhood U of x , there is a S^{M*} neighborhod V of x such that S^{M*} $ClV \subset U$).

Similarly, if $x \in B$, there is a S^{M*} _neighborhood U_x of x such that S^{M*} Cl $U_x \subset$ $X - A$.

If x is not an element of either A or B , then $X (A \cup B)$ is a S^{M*} neighborhood of x; hence we may find a S^{M*} _neighborhood U_x of x such that S^{M*} Cl $U_x \subset X - (A \cup B)$ (and thus S^{M*} Cl $U_x \cap (A \cup B)$ B) = ϕ).

The family of U_x for each $x \in X$ is an open cover for X. Since X is S^{M*} *Lindelöf*, this S^{M*} _cover has a countable sub cover $\{U_{xn}\}$ $n = 1, 2, 3, ...$. Let $U_1, U_2, ...$ be the U_{xn} (relabeled for convenience) which meet A, and let V_1 , V_2 , ... be the V_{x_n} which meet B.

Then for each positive integer n , S^{M*} Cl U_n \cap $B = \phi$ and S^{M*} Cl $V_n \cap A = \phi$; moreover $A \subset$ $∪_N U_n$ and $B ⊂ ∪_N V_n$. Define $W₁ = U₁$ and set $Y_1 = V_1 - S^{M*} \mathcal{C} l \, W_1.$

Let $W_2 = U_2 - S^{M*} C l Y_1$ and $Y_2 = V_2 - (S^{M*} C l W_1 \cup$ S^{M*} Cl W_2). Suppose W_n and Y_n have been defined, then set $W_{n+1} = U_{n+1} - S^{M*}$ (ClY₁ \cup $ClY_2 \cup ... \cup ClY_n)$ and

 $Y_{n+1} = V_{n+1} - S^{M*}$ (Cl $W_1 \cup Cl W_2 \cup ... \cup Cl W_{n+1}$), W_n is always an open set since

 $W_n = U_n \cap (X - S^{M*} (ClY_1 \cup ClY_2 \cup ... \cup ClY_{n-1}))$

 $= U_n \cap (X - S^{M*}Cl(Y_1 \cup Y_2 \cup ... \cup Y_{n-1}))$;

hence W_n is the intersection of two S^{M*} _open sets, and is therefore S^{M*} open.

Similar reasoning shows that Y_n is S^{M*} open for each n. Set $H = \bigcup_N W_n$ and $K = \bigcup_N Y_n$, since H and K are the union of S^{M*} open sets, then are S^{M*} _open. Suppose $a \in A$, then $a \in U_n$ for some n, and

 $W_n = U_n - S^{M*} (ClY_1 \cup ClY_2 \cup ... \cup ClY_{n-1}).$ But for any k, S^{M*} Cl Y_k \subset S^{M*} Cl V_k

and S^{M*} Cl $V_k \cap A = \phi$. Therefore $a \notin S^{M*}$ Cl Y_k for any k. We have then that $a \in W_n$. Therefore $A \subset \cup_N W_n = H$.

Similarly $B \subset K$. In order to show that X is S^{M*} _normal, we now have merely to prove *H* ∩ $K = \phi$. Suppose that $x \in H \cap K$, then $x \in$ $W_n \cap Y_m$ for some m and n. Suppose $m \geq$ *n*.Then $x \in Y_m = V_m - S^{M*}$ (Cl $W_1 \cup ... \cup ClW_n \cup$ ClW_m); hence x could not be in ClW_n , a contradiction.

On the other hand $m < n$, then $x \in W_n = U_n$ – S^{M*} (ClY₁ ∪ …∪ ClY_m ∪ …∪ ClY_{n-1}). Thus $x \notin$ S^{M*} ClY_m , again a contradiction .

There for H and K are disjoint S^{M*} open subsets of X , which contain A and B , respectively, and hence X is S^{M*} normal.

On the other hand**,** by Remark 2.2 and Proposition 2.1 we have the following stronger result.

Corollary 2.3: AS^{M*} _ compact $S^{M*}T_{2}$ space is $S^{M*}T_{4}_\text{space.}$

Proof: Since X is S^{M*} _ compact then X is S^{M*} μ Lindelöf (by Remark 2.2), and any S^{M*}

compact, $S^{M*}T_{2}$ space is $S^{M*}T_{3}$ space (by Corollary 2.2), then X is $S^{M*}T_3$ space, hence X is S^{M*} ₋regular. Then X is S^{M*} ₋ normal (by Proposition 2.1). Hence *X* is $S^{M*}T_{4}$ space.

Definition 2.6 : Let (X, τ) and (Y, σ) be two topological spaces, then X is said to be S^{M*} ₋homemorphic to Y iff there exist a S^{M*} homemorphism function (f is bij, f is S^{M*} ₋irresulte , f⁻¹ is S^{M*} ₋irresulte) from (X, τ) onto (Y,σ) and we denoted for that $X \cong M^* Y$. Since any ^{M∗} _homemorphism is S^{M*} ₋irresulte (Theorem 1.2:[11]) we have the following

Corollary 2.4 : If (X, τ) is S^{M*} _{-compact} then any space S^{M*} _homemorphic to X is S^{M*} _compact.

Proposition 2.2 : Let f be a S^{M*} *irresulte* oneone function from a S^{M*} compact space (X, τ) on to a $S^{M*}T_{2-}$ space $(Y,\sigma).$ Then f is a S^{M∗}_homemorphism.

1988 1988 1988 1989 198 Proof: We must show that f^{-1} is S^{M*} ₋irresulte. We use (Proposition8 Chapter4[6]) Let (X, τ) and (Y,σ) be two topological spaces, then a function from X to Y is continuous if and only if given any closed subset F of $Y, f^{-1}(F)$ is a closed subset of X.).Suppose \overrightarrow{F} is any S^{M*} cloced subset of X. Since F is S^{M*} closed, F is S^{M*} compact (Theorem 1.1[11]); hence f(F) is a S^{M*} _compact**(** Theorem $1.2[11]$). Then f(F) is a S^{M*} compact subset of a $S^{M*}T_{2-}$ space and is therefor S^{M*} _closed(Theorem 2.1). But

that if F is any S^{M*} closed subset of X, $(f^{-1})^{-1}(F)$ is a S^{M*} closed subset of Y. therefore f^{-1} is S M* ₋*irresulte*; hence f is S^{M∗}_homemorphism.

Definition 2.7 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be aS^{M*} irresolte if for every $U \in$ S^{M*} $O(Y)$, $f^{-1}(U)$ is α _open set in X.

Corollary 2.5 : A $a S^{M*}$ irresolute surjection image of a _compact space is S^{M*} compact space .

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an aS^{M*}_irresolute and surjection function, let $\{Gi, i \in I\}$ be ans^{M*} _ _open subset cover of Y. Then $f^{-1}(Gi)$, $i \in I$ } be an a_open sub set cover of X, since X is α_compact , then there exist finite sub set I 0 of I such that $X = ∪$ $f^{-1}(Gi)$, $i \in I_0$ hence $Y = f(X) = 0$ ${f(f^{-1})(Gi)}$, $i \in I_0$ $\subset \cup \{Gi, i \in I_0\}$ which is an S^{M*} __open cover of Y. Thus Y is S^{M*} _compact.

Theorem 2.2 : The image of an α compact subset under on αS^{M*} *irresulte* function is S^{M*} _compact.

Proof : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an αS^{M*} ₋irresolute and surjection function, let A be α compact subset of X, then let $\{Ui, i \in I\}$ be S^{M*} open set cover of f(A) such that $f(A) \subset$ $\cup \{U_i; i \in I\}$. Thus A ⊂ $f^{-1}(f(A)) \subset f^{-1}(U\{U_i; i \in I\})$ I }) ⊂ ∪{ $f^{-1}(U_i)$; $i \in I$ }, A ⊂ ∪{ $f^{-1}(U_i)$; $i \in I$ }. Since f is αS^{M*} irresolute, then $\{f^{-1}(U_i); i \in$ *I*} $\in \alpha O(X)$. Since A is α _compact and $\{f^{-1}(U_i); i \in I\}$ is an α _open cover of A. Then there exists a finite sub set I_0 of I such that A⊂∪{ $f^{-1}(U_i)$; $i \in I_0$ }, this implies that f(A) ⊂ $\cup \{ff^{-1}(U_i); i \in I_0\}$ ⊂ $\cup \{U_i; i \in I_0\}$. Then f(A) is S^{M*} _compact.

Definition 2.8 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be αS^{M*} continuous if for every $U \in$ $\alpha O({\sf Y})$, $f^{-1}(U)$ is S^{M*} _open set in X .

Theorem 2.3 : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be αS^{M*} _continuous and surjective function, if X is S^{M*} compact then Y is α compact.

Proof : Let $\{V_{\alpha}; \alpha \in I\}$ is a α open set cover of Y, since f is αS^{M*} continuous then $\{f^{-1}(V_\alpha); \alpha \in I\}$ be S^{M*} open set cover of X. Since X is S^{M*} compact then there exists a finite sub set I_0 of I such that $X = \cup \{f^{-1}(V_\alpha); \alpha \in I_0\}$, since f is surjective, then $f(x) = Y = \cup \{V_\alpha : \alpha \in I_0\}$. Then Y is α _compact.

Definition 2.9 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be RS^{M*} continuous if for every $V \in$ $RO(Y)$, $f^{-1}(V) \in S^{M*}O(X)$.

Theorem 2.4 : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be RS^{M*} continuous and $surjective$ function, if X is S^{M*} _compact then Y is nearly compact.

Proof : Let $\{V_{\alpha}; \alpha \in I\}$ is regular _open cover of *Y*, since f is NS, then $\{f^{-1}(V_\alpha); \alpha \in I\}$ be S^{M*} open set cover of X, since X is S^{M*} compact. Then there exists finite sub set I_0 of I such that $X = ∪ \{f^{-1}(V_\alpha)\colon \alpha \in I_0\}$, since f is surjective, then $f(x) = Y = \cup \{V_\alpha : \alpha \in I_0\}$, then Y is nearly compact.

Definition 2.10 : A space (X, τ) is called S^{M*} _locally indiscrete space if every S^{M*} _open subset of X is S^{M*} _closed.

Corollary 2.6 : For a topological space (X, τ) these phrases will be equal:

- (1) X is S^{M*} _{compact}.
- (2) X is a $S^{M*} _C_3$ space, i.e. \forall h $S^{M*} _$ closed set is finite.

Remark : A subset B of a topological space (X, τ) is called S^{M*} _closed, if every subset of B is also S^{M*} _closed in (X, τ) , then B is called hereditarily S^{M*} _closed (h S^{M*} _closed).

Corollary 2.7 :Let O a subset of a topological space (X, τ) these phrases will be equal :

 (1) O is hS^{M*} _closed.

(2) $N(X) \cap Int(cl(A)) = \emptyset$, where $N(X)$ point out the set of nowhere dense singletons in X .

Corollary 2.8 : Let (X, τ) by any space and let (Y, σ) by S^{M*} _indiscrete. Let $A \subseteq X \times Y$ and let P: $X \times Y \rightarrow X$ denote the projection. Then $int(cl(A)) = int(cl(p(A))) \times Y$.

Proposition 2.3: Let $(X_\alpha, \tau_\alpha)_{\alpha \in \Omega}$ be a family of pairwise disjoint topological spaces. For the topological sum $X = \sum_{\alpha \in \Omega} X_{\alpha}$ the following conditions are equivalent:

- (1) X is a S^{M*} _compact space.
- (2) Each X_α is a S^{M*} _compact space and $|\Omega| < \aleph_0$.

Theorem 2.6 : If (X, τ) is S^{M*} compact and (Y, σ) is finite and S^{M*} locally indiscrete then $X \times Y$ is S^{M*} _compact.

Proof : Since Y is a finite topological sum of indiscrete spaces**,** by(Proposition 2.3) it suffices to assume that Y is S^{M*} indiscrete. Suppose that $A \subseteq X \times Y$ is infinite and h S^{M*} _closed. Then $p(A)$ is infinite and hence, by Corollary 2.6 and Corollary 2.7 we have $N(X) \cap Int(cl(p(A))) \neq \emptyset$. Pick $x \in N(X) \cap$ $Int(cl(p(A)))$ and $y \in Y$. Then $\{(x, y)\}\$ is nowhere dense in $X \times Y$ and by Corollary 2.8, we have $((x, y) \in int(cl(A)), a$ contradiction to the hS^{M*} *_closednees* of *A*. Thus $X \times Y$ is S^{M*} _compact.

Conclusion: The simply* compact spaces was introduced which are defined over simply* open set**.** In addition relation between the simply* separation axioms and the compactness were studied. It can be concluded that some of the theories to study stacking more broadly is presented and it is necessary to provide a lot of other theoretical research to study the topic fully**.**

References:

- $[1]$. M. E. *Abd El* Monsef, A.M. Kozae, M.J. Iqelan, "Near Approximations in Topological Spaces" Int. Journal of Math. Analysis, Vol. 4, 2010, no. 6, 279 – 290.
- [2]. M. Agrawali, " C-a-Compact Spaces" Note di matematica ISSN 1123-2536, e-ISSN 1590-0932 Note Mat. 30 (2010) n. 1, 87–92.
- [3]. M. H. Hadi "On c*-Compact Spaces " Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 28, 1351 – 1356 .
- [4]. S.Lipschutz "Theory and problems of general topology" Schums series (1986).
- [5]. S. N. Masheshwari and S. S. Thakur "On α -compact space" Bull inst. Math. Acad. Sinica 13 (1985) 341-347.
- [6]. Michael. C. Gemignani "Elementary topology" 1971.
- [7]. A. A. $Nasef$ and R. $Mareay$ " More on simply open sets its applications" South Asian Journal of Mathematics 2015 , Vol.5 (3) , ISSN 2251-1512.
- [8]. A. Neubrunnove "On transfinite sequence of certain types of function " Acta. Fac. Nature Univ. Com. Math, 30(1975), 121-126.
- [9]. O. Njasted "On some classes of nearly open sets " $Pacifyc.$ J. Math. 15 (1965) 961-970.
- [10]. Z. Salleh, "Pairwise Nearly Compact and Pairwise Nearly Para compact Spaces and it Application", AIP Conference Proceedings 1750, 050007 (2016).
- [11]. M. El- Sayed, "Relation between some types of continuity in topological spaces", 2007.
- $[12]$. M. El- Sayed and I. A. $Noaman$ "simply fuzzy generalized open and closed sets " Journal of Advances in Mathematics 4(3) (2013) 2347-1921.
- [13]. M. K. Singal and Asha Mathur" On nearly compact spaces" Bull. UMT (4) 2 (1969) 701-710.
- [14]. M. H. *Stone* "Application of the theory of Boolean rings to general topology" Tams. 41(1937) 375-381 .
- [15]. S. Willard "General topology" Addison Wesiely Readings Mass. London D, on Mills. Ont,(1970).
- $[16]$. O. Ya. Viro, O. A. Ivanov, N. Yu.

Netsvetaev, and V.M. Kharlamov "Elementary topology" , american Mathematical Soc, 2008.