

ABSTRACT/ In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as aS^{M*} _irresolte, aS^{M*} _continuous and RS^{M*} _continuous, which are defined between two topological spaces. **Keywords:** simply* compact , S^{M*} _regular , S^{M*} _normal, S^{M*} _ Lindelöf , S^{M*} _homemorphism. **Key words:** Breast cancer , Support Vector machine , Wisconsin Breast Cancer , Confusion Matrix, Information Gain. . RESUMEN/ En el presente trabajo, se introdujo un simple * espacios compactos definidos sobre simple * - conjunto de conocimientos previos y estudiamos la relación entre los axiomas de separación simple * y la compacidad, además de introducir un nuevo tipo de funciones conocidas como $aS^{(M*)}_{M*}$ _irresolte, $aS^{(M*)}_{M*}_{M*}$ continuo, que se definen entre dos espacios topológicos.

Palabras clave: simplemente * compacto, S^{M*} _regular, S^{M*} _normal, S^{M*} _Lindelo "f, S^{M*} _homemorphism.

Introduction:

In 1969 M. K. *Singal* and *Asha* Mathur presented the concept of nearly compact if (every regular open cover of *X* has a finite sub cover)[13], which depends on the regular open set if (S = int(cl(S))) was used for the first time in 1937 by M. H. Stone[14], it symbolizes by RO(X). In 1985 S. N. *Masheshwari* and S. S. Thakur presented the concept of α - compact if (for all α -open cover of *X* has a finite sub cover)[5], which depends on the α -open sets if ($K \subset int(cl(int(K)))$) was used for the first time in 1965 by *Njasted* [9], it symbolizes by aO(X)).

In 2007, the term of " simply* _compact" was used for the first time by M. El- Sayed[11], he was adopted in his definition of anew set is said a simply*open set, it symbolizes by $S^{M*}O(X)$),

it is considered an amendment to the set simply open set the researcher A. *Neubrunnove* presented it in 1975[8] if $(H = k \cup N \text{ such that})$ K is open set and N is nowhere dense (N is $cl(int N) = \emptyset[15])),$ nowhere dense if it symbolizes by $S^M O(X)$. He also studied the basic concepts on this set and some of the separation axioms(for example S^{M*} _regular and S^{M*} _normal), and simply* - connect if (a subset *M* of apace(*X*, τ) is said simply* connect relative $to(X, \tau)$ if there are no subsets *E* and *F* of X such that E and F are S^{M*} – separated i.e (two nonempty subsets E and F in a topological space (X, τ) are said to be S^{M*} – separated if $E \cap$ ARTÍCULO $S^{M*} \operatorname{cl}(\mathsf{F}) = \emptyset = F \cap S^{M*} \operatorname{cl}(\mathsf{F})$ relative $\operatorname{to}(X, \tau)$ and $M = E \cup F$). In 2013 M. El- Sayed and I A. *Noaman* presented a transformed definition of simply open set if (A subset O of a topological

space (X, τ) is simply open set if $int(cl(0)) \subseteq cl(int(0))$ [12]. The aim of this paper is to introduce some results on Simply* compact and present a new types of functions known as αS^{M*} _irresolte, αS^{M*} _continuous and $R S^{M*}$ _ continuous, which are defined between two topological spaces.

1.Basic concepts

Definition 1.1 :[11] A subset F of a topological space (X, τ) is said to be Simply* open set (for short, S^{M*} _open) set if $F \in \{X, \emptyset, G \cup N; G \text{ is a proper open set and } N \text{ is a nowhere dense set}\}.$

It is symbolizes by $S^{M*}O(X)$. The complement of an simply* open set is said to be simply* closed (for short, S^{M*} _closed) set and it symbolizes is by $S^{M*}C(X)$.

Remark 1.1 :[11] The following diagram show the relationship between this species and other species:

Regular open $(RO(X)) \rightarrow \alpha$ -open $(\alpha O(X)) \rightarrow \text{simply open}(S^MO(X))$

$$\downarrow$$

7

Simply* open $(S^{M*} O(X))$

Diagram 1.1

Example 1.1 : Let $X = \{1,2,3,4\}, \tau = \{X, \emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}$ then the set **{4}** $\in S^M O(X)$ but **{4}** $\notin S^{M*} O(X)$.

Definition 1.2 : [11] A space (X, τ) is said to be simply* compact (for short, S^{M*} _compact) if every S^{M*} _open cover of X has a finite sub cover.

Definition 1.3 :[11] A space (X, τ) is said to be S^{M*} _regular if for every $A \in S^{M*} C(X)$; $x \notin A$ then there exist $U, V \in S^{M*} O(X)$; $U \cap V = \emptyset$ such that $x \in U$ and $A \subset V$.

Definition 1.4 :[11] A space (X, τ) is said to be S^{M*} _normal if for every $U, V \in S^{M*} C(X)$; $U \cap V = \emptyset$ then there exist $H, F \in S^{M*} O(X)$ such that $U \subset H$ and $V \subset F$.

Definition1.5 :[6] A space (X, τ) is said to be a *Lindelöf* space if every open cover of *X* has a countable sub cover.

Definition 1.6 :[11] If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be S^{M*} _irresulte if every $U \in S^{M*} O(Y)$, $f^{-1}(U) \in S^{M*} O(X)$.

Definition 1.7:[11] For any topological space (X, τ) , a subset N_x of X is called S^{M*} _neighborhood (for short, S^{M*} _nbd) of a point $x \in X$ if there exist S^{M*} _open set W such that $x \in W \subset N_x$. The class of all S^{M*} _nbd of x is called S^{M*} _neighborhood system of x and denoted by S^{M*} _ N_x .

Definition 1.8 :[11] For any topological space (X, τ) and $A \subseteq X$. We define simply* interior (resp. simply* closure) of A as the following: $-S^{M*}_int(A) = \cup \{G \subset X: G \in S^{M*} O(X), G \subset A\}$ $-S^{M*}_cl(A) = \cap \{F \subset X: F \in S^{M*} C(X) F \supset A\}$

Theorem 1.1 :[11] A S^{M*} closed subset of S^{M*} compact space (X, τ) is S^{M*} compact.

Theorem 1.2 :[11] If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is S^{M*} _irresulte surjectiv and X is S^{M*} _compact then Y is S^{M*} _compact.

2.Main results

Definition 2.1 : A space (X, τ) is said to be $S^{M*}T_1$ space if for any two distinct points x and y of X, there exist $U, V \in S^{M*}O(X)$;such that $(x \in U \land y \notin U)$ and $(x \notin V \land y \in V)$.

Definition 2.2 : A space (X, τ) is said to be $S^{M*}T_{2_}$ space if for all $x, y \in X$; $x \neq y$ then there exist $U, V \in S^{M*}O(X)$ such that $(x \in U \land y \in V)$ or $(x \in V \land y \in U)$ and $U \cap V = \emptyset$.

Theorem 2.1 : Any S^{M*} _compact space of a $S^{M*}T_2$ _ space is S^{M*} _closed.

Proof: Let *A* be a S^{M*} _compact subset of a $S^{M*}_{2} T_{2}$ space (X, τ) , and suppose $x \in X - A$. We must find a S^{M*} _neighborhood of *x* which does not meet *A* (thus showing that X - A is S^{M*}_{2} open), since *X* is $S^{M*}_{2} T_{2}$ space, given any $y \in A$, there are S^{M*}_{2} neighborhoods U_{y} and V_{y} of *x* and *y*, respectively such that $U_{y} \cap V_{y} = \emptyset$. Then $\{V_{y}\}, y \in A$ is an S^{M*}_{2} open cover of *A*. Hence there are finitely many *y* say $y_{1}, y_{2}, ..., y_{n}$ such that $\{V_{y_{1}}, ..., V_{y_{n}}\}$ is an S^{M*}_{2} open cover of *A*. Hence there are finitely many *y* say $y_{1}, y_{2}, ..., y_{n}$ such that $\{V_{y_{1}}, ..., V_{y_{n}}\}$ is an S^{M*}_{2} open cover of *A*. Set $U = U_{y_{1}} \cap ... \cap U_{y_{n}}$ and $V = V_{y_{1}} \cup ... \cup V_{y_{n}}$ then $x \in U$, $A \subset V$ and $U \cap V = \emptyset$ and hence *U* is S^{M*}_{2} neighborhood of *x* such that $U \cap A = \emptyset$. Then *A* is S^{M*}_{2} closed.

Definition 2.3 : A space (X, τ) is said to be $S^{M*}T_3$ _space if X is both S^{M*} _regular and $S^{M*}T_1$ space.

Definition 2.4 : A space (X, τ) is said to be $S^{M*}T_4$ _space if X is both S^{M*} _ normal and $S^{M*}T_1$ space.

Remark 2.1 :The following diagram show the relation between the types of Separation Axioms

 $S^{M*}T_4$ _space $\rightarrow S^{M*}T_3$ _space $\rightarrow S^{M*}T_2$ _space $\rightarrow S^{M*}T_1$ space

Diagram 2.1

Combining Theorem(1.1) and (2.1) we obtain the following.

Corollary 2.1 : A subset of a S^{M*} _ compact and $S^{M*}T_2$ _ space is S^{M*} _ compact if and only if it is S^{M*} _ closed.

Corollary 2.2 : A S^{M*} _ compact and $S^{M*}T_2$ _ space is $S^{M*}T_3$ _space.

Proof: Let $A \subset X$ by Theorem(2.1) A is S^{M*} *_closed*, since there exist $U, V \in S^{M*} O(X)$ such that $x \in U, A \subset V$ and $U \cap V = \emptyset$ (by proof Theorem(2.1)), hence X is S^{M*} _regular. Since X is $S^{M*}T_{2}$ space, by Diagram (2.1) X is $S^{M*}T_1$ space. Hence X is $S^{M*}T_3$ _space.

Definition 2.5 : A space (X, τ) is said to be a S^{M*} _ Lindelöf space if every S^{M*} _ open cover of *X* has a countable sub cover.

Remark 2.2 : Any S^{M*} _ compact is S^{M*} Lindelöf.

Proposition 2.1 : A S^{M*} _regular S^{M*} Lindelöf is S^{M*} normal.

Proof: Let (X, τ) be S^{M*}_regular Lindelöf space and let A, B be disjoint S^{M*} _closed subsets of X. If $x \in A$, then X - B is a S^{M*} _neighborhood of x. Since X is S^{M*} _regular, there is a neighborhood U_x of x such that $S^{M*} Cl U_x \subset X B(a \text{ space } (X, \tau) \text{ is } S^{M*} \text{ _regular if and only if given}$ any $x \in X$ and any S^{M*} _neighborhood U of x, there is a S^{M*} _neighborhod V of x such that $S^{M*} ClV \subset U$).

Similarly, if $x \in B$, there is а S^{M*} _neighborhood U_x of x such that $S^{M*} Cl U_x \subset$ X - A.

If x is not an element of either A or B, then X - X $(A \cup B)$ is a S^{M*} _neighborhood of x; hence we may find a S^{M*} _neighborhood U_x of x such that $S^{M*} Cl U_x \subset X - (A \cup B)$ (and thus $S^{M*} Cl U_x \cap (A \cup B)$) $B) = \phi$).

The family of U_x for each $x \in X$ is an open cover for X. Since X is S^{M*} _Lindelöf, this S^{M*} _cover has a countable sub cover{ U_{xn} ; n = 1, 2, 3, ... Let $U_1, U_2, ...$ be the U_{xn} (relabeled for convenience) which meet A, and let V_1 , V_2 , ... be the V_{xn} which meet B.

Then for each positive integer n , $S^{M*} Cl U_n \cap$ $B = \phi$ and $S^{M*} Cl V_n \cap A = \phi$; moreover $A \subset$ $\cup_N U_n$ and $B \subset \cup_N V_n$. Define $W_1 = U_1$ and set

 $Y_1 = V_1 - S^{M*} Cl W_1.$ Let $W_2 = U_2 - S^{M*} Cl Y_1$ and $Y_2 = V_2 - (S^{M*} Cl W_1 \cup S^{M*} Cl W_2)$ $S^{M*}ClW_2$). Suppose W_n and Y_n have been defined, then set $W_{n+1} = U_{n+1} - S^{M*} (ClY_1 \cup$ $ClY_2 \cup ... \cup ClY_n$) and

 $Y_{n+1} = V_{n+1} - S^{M*} (Cl W_1 \cup Cl W_2 \cup ... \cup Cl W_{n+1}), W_n$ is always an open set since

 $W_n = U_n \cap (X - S^{M*} (ClY_1 \cup ClY_2 \cup \dots \cup ClY_{n-1}))$

 $= U_n \cap (X - S^{M*} Cl(Y_1 \cup Y_2 \cup \dots \cup Y_{n-1}))$

hence W_n is the intersection of two S^{M*} _open sets, and is therefore S^{M*} _open.

Similar reasoning shows that Y_n is S^{M*} _open for each n. Set $H = \bigcup_N W_n$ and $K = \bigcup_N Y_n$, since Hand K are the union of S^{M*} open sets , then are S^{M*} _open. Suppose $a \in A$, then $a \in U_n$ for some n, and

 $W_n = U_n - S^{M*} (ClY_1 \cup ClY_2 \cup ... \cup ClY_{n-1}).$ But for any k, $S^{M*} Cl Y_k \subset S^{M*} Cl V_k$

and $S^{M*} Cl V_k \cap A = \phi$. Therefore $a \notin S^{M*} Cl Y_k$ for any k. We have then that $a \in W_n$. Therefore $A \subset \bigcup_N W_n = H$.

Similarly B \subset K. In order to show that X is S^{M*} _normal, we now have merely to prove $H \cap K = \phi$. Suppose that $x \in H \cap K$, then $x \in$ $W_n \cap Y_m$ for some m and n. Suppose $m \ge m$ $x \in Y_m = V_m - S^{M*} (Cl W_1 \cup ... \cup Cl W_n \cup ... \cup ... \cup U_n \cup U_n \cup U_n \cup ... \cup U_n \cup U_n$ *n*.Then ClW_m); hence x could not be in ClW_n , a contradiction.

On the other hand m < n, then $x \in W_n = U_n - U_n$ $S^{M*}(ClY_1 \cup ... \cup ClY_m \cup ... \cup ClY_{n-1}).$ Thus $x \notin$ $S^{M*} ClY_m$, again a contradiction.

There for *H* and *K* are disjoint S^{M*} _open subsets of X, which contain A and B, respectively, and hence X is S^{M*} _normal.

On the other hand, by Remark 2.2 and Proposition 2.1 we have the following stronger result.

Corollary 2.3: A S^{M*} _ compact $S^{M*}T_2$ _ space is $S^{M*}T_4$ _space.

Proof: Since X is S^{M*} _ compact then X is S^{M*} _ Lindelöf (by Remark 2.2), and any S^{M*} _

compact, $S^{M*}T_{2}$ space is $S^{M*}T_{3}$ space (by Corollary 2.2), then X is $S^{M*}T_3$ _space , hence X is S^{M*} _regular. Then X is S^{M*} _ normal (by Proposition 2.1). Hence X is $S^{M*}T_4$ _space.

Definition 2.6 : Let (X,τ) and (Y,σ) be two topological spaces, then X is said to be S^{M*} _homemorphic to Y iff there exist a S^{M*} _homemorphism function (f is bij , f is S^{M*} _irresulte, f^{-1} is S^{M*} _irresulte) from (X, τ) onto (Y,σ) and we denoted for that $X \cong^{M^*} Y$. Since any S^M* _homemorphism is S^{M*} _irresulte (Theorem 1.2:[11]) we have the following

Corollary 2.4 : If (X, τ) is S^{M*} _compact then any space S^{M*} homemorphic to X is S^{M*} compact.

Proposition 2.2 :Let f be a S^{M*} _irresulte oneone function from a S^{M*} _compact space (X, τ) on to a $S^{M*}T_{2-}$ space (Y,σ) . Then f is a S^{M*} _homemorphism.

Proof: We must show that f^{-1} is S^{M*} _irresulte. We use (Proposition8 Chapter4[6]) Let (X, τ) and (Y,σ) be two topological spaces, then a function from X to Y is continuous if and only if given any closed subset F of $Y, f^{-1}(F)$ is a closed subset of X.). Suppose F is any S^{M*} _cloced subset of X. Since F is S^{M*} _ closed, F is S^{M*} _compact (Theorem 1.1[11]); hence t(F) is a S^{M*} _compact (Theorem 1.2[11]); hence f(F) is a S^{M*} _compact subset of a $S^{M*}T_2$ _ space and is therefor S^{M*} _closed(Theorem 2.1). But $f(F) = (f^{-1)-1}(F)$. We have therefor $f(F) = (f^{-1)-1}(F)$. We have therefore shown **198**

that if F is any S^{M*} closed subset of X, $(f^{-1)-1}(F)$ is a S^{M*} _closed subset of Y. therefore f^{-1} is S^{M*}_irresulte; hence f is S^{M*} _homemorphism.

Definition 2.7 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be aS^{M*} _irresolte if for every $U \in$ $S^{M*} O(\mathbf{Y})$, $f^{-1}(U)$ is α open set in X.

Corollary 2.5 : A a *S^{M*}* irresolute surjection image of a_compact space is S^{M*} _compact space.

Proof: Let $f:(X,\tau) \longrightarrow (Y,\sigma)$ be an aS^{M*} _irresolute and surjection function, let $\{Gi, i \in I\}$ be an S^{M*} ____open subset cover of Y. Then $f^{-1}(Gi), i \in I$ be an a_open sub set cover of X, since X is a_compact , then there exist finite sub set I_0 of I such that X = U $f^{-1}(Gi), i \in I_0$ and hence Y = f(X) = U $\{f(f^{-1})(Gi)\}, i \in I_0\} \subset \cup \{Gi, i \in I_0\}$ which is an S^{M*} _open cover of Y. Thus Y is S^{M*} _compact.

Theorem 2.2 : The image of an α _compact subset under on αS^{M*} _*irresulte* function is S^M∗ _compact.

Proof : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an αS^{M*} _irresolute and surjection function, let A be α _compact subset of *X*, then let {*Ui*, *i* \in *I*} be S^{M*} open set cover of f(A) such that $f(A) \subset$ $\cup \{U_i; i \in I\}$. Thus $A \subset f^{-1}(f(A)) \subset f^{-1}(\cup \{U_i; i \in I\})$ $I\}) \subset \cup \{f^{-1}(U_i); i \in I\}, \quad \mathsf{A} \subset \cup \{f^{-1}(U_i); i \in I\} \quad .$ Since f is αS^{M*} _irresolute, then $\{f^{-1}(U_i); i \in$ $I\} \in \alpha O(X)$. Since A is α -compact and $\{f^{-1}(U_i); i \in I\}$ is an α -open cover of A. Then there exists a finite sub set I_0 of I such that $A \subset \bigcup \{ f^{-1}(U_i); i \in I_0 \}$, this implies that $f(A) \subset$ $\cup \{ f f^{-1}(U_i); i \in I_0 \} \subset \cup \{ U_i; i \in I_0 \}.$ Then f(A) is S^{M*} _compact.

Definition 2.8 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be αS^{M*} _continuous if for every $U \in$ $\alpha O(\mathbf{Y})$, $f^{-1}(U)$ is S^{M*} open set in X.

Theorem 2.3 : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be αS^{M*} _continuous and *surjective* function, if X is S^{M*} _compact then Y is α _compact.

Proof : Let { V_{α} ; $\alpha \in I$ } is a α _open set cover of Y_{α} since f is αS^{M*} _continuous then $\{f^{-1}(V_{\alpha}); \alpha \in I\}$ be S^{M*} open set cover of X. Since X is S^{M*} _compact then there exists a finite sub set I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha); \alpha \in I_0\}$, since f is surjective , then $f(x) = Y = \bigcup \{V_{\alpha}; \alpha \in I_0\}$. Then *Y* is α _compact.

Definition 2.9 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be $R S^{M*}$ continuous if for every $V \in$ RO(Y), $f^{-1}(V) \in S^{M*}O(X)$.

Theorem 2.4 : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be $R S^{M*}$ continuous and *surjective* function, if *X* is S^{M*} _compact then Y is nearly compact.

Proof: Let $\{V_{\alpha}; \alpha \in I\}$ is regular _open cover of *Y*, since f is NS , then $\{f^{-1}(V_{\alpha}); \alpha \in I\}$ be S^{M*} _open set cover of X , since X is S^{M*} _compact. Then there exists finite sub set I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha); \alpha \in I_0\}$, since f is surjective, then $f(x) = Y = \bigcup \{V_{\alpha}; \alpha \in I_0\}$, then *Y* is nearly compact.

Definition 2.10 : A space (X, τ) is called S^{M*} locally indiscrete space if every S^{M*} open subset of X is S^{M*} _closed.

Corollary 2.6 : For a topological space (X, τ) these phrases will be equal:

- X is S^{M*} _compact. (1)
- X is a S^{M*} _C₃ space, i.e. \forall h S^{M*} _closed (2) set is finite.

Remark : A subset B of a topological space (X, τ) is called S^{M*} _closed, if every subset of B is also S^{M*} _closed in (X, τ) , then B is called hereditarily S^{M*} _closed (h S^{M*} _closed).

Corollary 2.7 :Let O a subset of a topological space (X, τ) these phrases will be equal :

(1) O is hS^{M*} _closed.

(2) $N(X) \cap Int(cl(A)) = \emptyset$, where N(X) point out the set of nowhere dense singletons in *X*.

Corollary 2.8 : Let (X, τ) by any space and let (Y, σ) by S^{M*} _indiscrete. Let $A \subseteq X \times Y$ and let P: $X \times Y \longrightarrow X$ denote the projection. Then $int(cl(A)) = int(cl(p(A))) \times Y$.

Proposition 2.3: Let $(X_{\alpha}, \tau_{\alpha})_{\alpha \in \Omega}$ be a family of pairwise disjoint topological spaces. For the topological sum $X = \sum_{\alpha \in \Omega} X_{\alpha}$ the following conditions are equivalent:

- (1)
- X is a S^{M*} _compact space. Each X_{α} is a S^{M*} _compact space and (2) $|\Omega| < \aleph_0.$

Theorem 2.6 : If (X, τ) is S^{M*} _compact and (Y, σ) is finite and S^{M*} _locally indiscrete then $X \times Y$ is S^{M*} compact.

Proof : Since Y is a finite topological sum of indiscrete spaces, by(Proposition 2.3) it suffices to assume that Y is S^{M*} _indiscrete. Suppose that $A \subseteq X \times Y$ is infinite and hS^{M*} closed. Then p(A) is infinite and hence, by Corollary 2.6 and Corollary 2.7 we have $N(X) \cap Int(cl(p(A))) \neq \emptyset.$ Pick $x \in N(X) \cap$ Int(cl(p(A))) and $y \in Y$. Then $\{(x, y)\}$ is nowhere dense in $X \times Y$ and by Corollary 2.8, we have $((x, y) \in int(cl(A)))$, a contradiction to the hS^M*_closednees of Α. Thus $X \times Y$ is S^M[∗] compact.

Conclusion: The simply* compact spaces was introduced which are defined over simply*open set. In addition relation between the simply* separation axioms the and compactness were studied. It can be concluded that some of the theories to study stacking more broadly is presented and it is necessary to provide a lot of other theoretical research to study the topic fully.

References:

- M. E. Abd El Monsef, A. M. Kozae, M. J. Iqelan, "Near Approximations in Topological Spaces" Int. Journal of Math. Analysis, Vol. 4, 2010, no. 6, 279 – 290.
- [2]. M. Agrawali, " C-a-Compact Spaces" Note di matematica ISSN 1123-2536, e-ISSN 1590-0932 Note Mat. 30 (2010) n. 1, 87-92.
- [3]. M. H. *Hadi* "On c*-Compact Spaces " Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 28, 1351 – 1356.
- [4]. S.*Lipschutz* "Theory and problems of general topology" *Schums* series (1986).
- [5]. S. N. Masheshwari and S. S. Thakur "On α-compact space" Bull inst. Math. Acad. Sinica 13 (1985) 341-347.
- [6]. Michael. C. *Gemignani* "Elementary topology" 1971.
- [7]. A. A. Nasef and R. Mareay " More on simply open sets its applications" South Asian Journal of Mathematics 2015, Vol.5 (3), ISSN 2251-1512.
- [8]. A. Neubrunnove "On transfinite sequence of certain types of function " Acta. Fac. Nature Univ. Com. Math, 30(1975), 121-126.
- [9]. O. *Njasted* "On some classes of nearly open sets "*Pacifyc*. J. Math. 15 (1965) 961-970.
- [10]. Z. Salleh, "Pairwise Nearly Compact and Pairwise Nearly Para compact Spaces and it Application", AIP Conference Proceedings 1750, 050007 (2016).
- [11]. M. El- *Sayed* ,"Relation between some types of continuity in topological spaces", 2007.
- M. El- Sayed and I. A. Noaman"simply fuzzy generalized open and closed sets " Journal of Advances in Mathematics 4(3) (2013) 2347-1921.
- [13]. M. K. *Singal* and *Asha Mathur*" On nearly compact spaces" Bull. UMT (4) 2 (1969) 701-710.
- [14]. M. H. *Stone* "Application of the theory of Boolean rings to general topology" Tams. 41(1937) 375-381.
- [15]. S. Willard "General topology" Addison Wesiely Readings Mass. London D, on Mills. Ont,(1970).
- [16]. O. Ya. Viro, O. A. Ivanov, N. Yu.

Netsvetaev, and V. M. Kharlamov "Elementary topology", american Mathematical Soc, 2008.