In the present work, an image compression method have been modified by combining The Absolute Moment Block Truncation Coding algorithm (AMBTC) with a VQ-based image coding. At the beginning, the AMBTC algorithm based on Weber's law condition have been used to distinguish low and high detail blocks in the original image. The coder will transmit only mean of low detailed block (i.e. uniform blocks like background) on the channel instate of transmit the two reconstruction mean values and bit map for this block. While the high detail block is coded by the proposed fast encoding algorithm for vector quantized method based on the Triangular Inequality Theorem (TIE), then the coder will transmit the two reconstruction mean values (i.e. H&L)
... Show More In this paper we prove a theorem about the existence and uniqueness common fixed point for two uncommenting self-mappings which defined on orbitally complete G-metric space. Where we use a general contraction condition.
In this paper, we show that for the alternating group An, the class C of n- cycle, CC covers An for n when n = 4k + 1 > 5 and odd. This class splits into two classes of An denoted by C and C/, CC= C/C/ was found.
A fuzzy valued diffusion term, which in a fuzzy stochastic differential equation refers to one-dimensional Brownian motion, is defined by the meaning of the stochastic integral of a fuzzy process. In this paper, the existence and uniqueness theorem of fuzzy stochastic ordinary differential equations, based on the mean square convergence of the mathematical induction approximations to the associated stochastic integral equation, are stated and demonstrated.
In this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.
We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of prox
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show MoreIn this paper we investigate the stability and asymptotic stability of the zero solution for the first order delay differential equation
where the delay is variable and by using Banach fixed point theorem. We give new conditions to ensure the stability and asymptotic stability of the zero solution of this equation.