In the context of normed space, Banach's fixed point theorem for mapping is studied in this paper. This idea is generalized in Banach's classical fixed-point theory. Fixed point theory explains many situations where maps provide great answers through an amazing combination of mathematical analysis. Picard- Lendell's theorem, Picard's theorem, implicit function theorem, and other results are created by other mathematicians later using this fixed-point theorem. We have come up with ideas that Banach's theorem can be used to easily deduce many well-known fixed-point theorems. Extending the Banach contraction principle to include metric space with modular spaces has been included in some recent research, the aim of study proves some properties of Banach space.
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
In this paper we prove a theorem about the existence and uniqueness common fixed point for two uncommenting self-mappings which defined on orbitally complete G-metric space. Where we use a general contraction condition.
In this paper, we introduced some fact in 2-Banach space. Also, we define asymptotically non-expansive mappings in the setting of 2-normed spaces analogous to asymptotically non-expansive mappings in usual normed spaces. And then prove the existence of fixed points for this type of mappings in 2-Banach spaces.
We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
In this paper, developed Jungck contractive mappings into fuzzy Jungck contractive and proved fuzzy fixed point for some types of generalize fuzzy Jungck contractive mappings.
The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of prox
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show More