In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
In the context of normed space, Banach's fixed point theorem for mapping is studied in this paper. This idea is generalized in Banach's classical fixed-point theory. Fixed point theory explains many situations where maps provide great answers through an amazing combination of mathematical analysis. Picard- Lendell's theorem, Picard's theorem, implicit function theorem, and other results are created by other mathematicians later using this fixed-point theorem. We have come up with ideas that Banach's theorem can be used to easily deduce many well-known fixed-point theorems. Extending the Banach contraction principle to include metric space with modular spaces has been included in some recent research, the aim of study proves some pro
... Show MoreThis paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
The problem of independent motion control of mobile robot (МR) in conditions when unforeseen changes of conditions of interaction of wheels with a surface are considered. An example of such changes can be sudden entrance МR a slippery surface. The deployment of an autonomous unmanned ground vehicle for field applications provides the means by which the risk to personnel can be minimized and operational capabilities improved. In rough terrain, it is critical for mobile robots to maintain good wheel traction. Wheel slip could cause the rover to lose control and become trapped. This paper describes the application of fuzzy control to a feedback system within slippery environment. The study is conducted on an example of М
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show MoreABSTRACT
Agricultural production, food security and safety, public health animal welfare, access to markets and alleviation of rural poverty have been achieved by controlling on veterinary services to prevent animal disease. World organization for animal health guidelines focus on controlling of animal disease which depends on good governance and veterinary services quality. The aim of veterinary services is controlling and preventing animal disease some of other aspects; it's responsibility of early detection, rapid response to outbreaks of emerging or re-emerging animal disease, optimizing quality and effectiveness of disease
... Show More