The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthermore, the major objective was to formulate a deep learning model for the identification of diseases and pests affecting oil palm leaves, using image analysis techniques to facilitate pest management practices. To address the core problem under investigation, the GoogLeNet deep learning approach was applied, alongside various hyperparameters. The classification experiments were executed across 16 trials, each capped at a computational timeframe of 10 minutes, and the predominant duration spanned from 2 to 7 minutes. The results, particularly derived from the superior performance in Model 4 (M4), showed evaluation accuracy, precision, recall, and F1-score rates of 93.22%, 93.33%, 93.95%, and 93.15%, respectively. These were highly satisfactory, warranting their application in oil palm companies to enhance the management of pest and disease attacks.
The volatility of the financial markets and the oil market plays a major role in influencing macroeconomic activity, as well as the high interaction between the both markets and the remarkable sensitivity to their each other fluctuations which cause the undesirable impact on other economic sectors as an expected result due the mentioned interaction.
The study aimed to analyze the relationship between the volatility of the major US market indices represented by the DJIA index, S & P500, due to their comprehensiveness of the financial market, as they summarize the performance of the entire US market which is the largest economy in the world, as well as the difference in the calculation mechanism, and oi
... Show MoreThis study was aimed to investigate the effect of essential oil extracted from the yellow peels of Citrus aurantium on the growth of four species of fungi: Penicillium expansum, Penicillium oxalicum, Fusarium oxysporum and Fusarium proliferatum and effect of one fungicide: Aliette (fosetyl-aluminum) against these fungi. The results showed that the essential oil of C. aurantium inhibited the radial growth of P. oxalicum at concentration 4.5% while P. expansum and F. oxysporum at concentrations 5% and F. proliferatum at concentrations 5.5% additionally the one fungicide tested showed inhibitory effect on radial growth of these fungi. So that there is a negative relationship between the increasing of concentration and radial growth of fungi.
The Late Cretaceous-Early Paleocene Shiranish and Aliji formations have been studied in three selected wells in Jambur Oil Field (Ja-50, Ja-53, and Ja-67) in Kirkuk, Northeastern Iraq. This study included lithostratigraphy and biostratigraphy. The Late Campanian-Maastrichtian Shiranish Formation consist mainly of thin marly and chalky limestone beds overlain by thin marl beds, with some beds of marly limestone representing an outer shelf basinal environment, the unconformable contact with the above Middle Paleocene-Early Eocene Aliji Formation contain layers of limestone with marly limestone and chalky limestone which represents an outer shelf basinal environment. Five Biozones in the Shiranish Formation were determined which are: 1
... Show MoreAn optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To impro
... Show More
In this work, calculation of pressure losses in circulating system for two drilling muds is evaluated in Noor oil field. Two types of drilling muds that were used for drilling section 12 1/4" and 8 3/4" which are Salt saturated mud and Ferro Chrome Lignosulfonate-Chrome Lignite mud. These calculations are based on field data that were gathered from the drilling site of well Noor-15, which are included, rheological data, flow data and specification of drill string. Based on the obtained results, the best rheological model that fit their data is the Herschel-Bulkley model according to correlation coefficient value for their two drilling mud. Also, the difference between the calculated pressure lo
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show More