Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).
In recent years, data centre (DC) networks have improved their rapid exchanging abilities. Software-defined networking (SDN) is presented to alternate the impression of conventional networks by segregating the control plane from the SDN data plane. The SDN presented overcomes the limitations of traditional DC networks caused by the rapidly incrementing amounts of apps, websites, data storage needs, etc. Software-defined networking data centres (SDN-DC), based on the open-flow (OF) protocol, are used to achieve superior behaviour for executing traffic load-balancing (LB) jobs. The LB function divides the traffic-flow demands between the end devices to avoid links congestion. In short, SDN is proposed to manage more operative configur
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThis paper present the fast and robust approach of English text encryption and decryption based on Pascal matrix. The technique of encryption the Arabic or English text or both and show the result when apply this method on plain text (original message) and how will form the intelligible plain text to be unintelligible plain text in order to secure information from unauthorized access and from steel information, an encryption scheme usually uses a pseudo-random enecryption key generated by an algorithm. All this done by using Pascal matrix. Encryption and decryption are done by using MATLAB as programming language and notepad ++to write the input text.This paper present the fast and robust approach of English text encryption and decryption b
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreWhen images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensiona
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.