Preferred Language
Articles
/
Gob8o4YBIXToZYALV5wU
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Proposed Handwriting Arabic Words classification Based On Discrete Wavelet Transform and Support Vector Machine
...Show More Authors

A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.

View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Image Splicing Detection Based on Discrete Wavelet Transform and co-occurrence Matrix
...Show More Authors

    In this paper a method  to determine whether an image is forged (spliced) or not is presented. The proposed method is based on  a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Offline Handwritten Signature Verification Based on Local Ridges Features and Haar Wavelet Transform
...Show More Authors

    Multiple applications use offline handwritten signatures for human verification. This fact increases the need for building a computerized system for signature recognition and verification schemes to ensure the highest possible level of security from counterfeit signatures. This research is devoted to developing a system for offline signature verification based on a combination of local ridge features and other features obtained from applying two-level Haar wavelet transform. The proposed system involves many preprocessing steps that include a group of image processing techniques (including: many enhancement techniques, region of interest allocation, converting to a binary image, and Thinning). In feature extraction and

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Classification of Cardiac Arrhythmia using ID3 Classifier Based on Wavelet Transform
...Show More Authors

Accurate detection of Electro Cardio Graphic (ECG) features is an important demand for medical purposes, therefore an accurate algorithm is required to detect these features. This paper proposes an approach to classify the cardiac arrhythmia from a normal ECG signal based on wavelet decomposition and ID3 classification algorithm. First, ECG signals are denoised using the Discrete Wavelet Transform (DWT) and the second step is extract the ECG features from the processed signal. Interactive Dichotomizer 3 (ID3) algorithm is applied to classify the different arrhythmias including normal case. Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database is used to evaluate the ID3 algorithm. The experimental resul

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
An Accurate Handwritten Digits Recognition system Based on DWT and FCT
...Show More Authors

In this paper an accurate Indian handwritten digits recognition system is
proposed. The system used three proposed method for extracting the most effecting
features to represent the characteristic of each digit. Discrete Wavelet Transform
(DWT) at level one and Fast Cosine Transform (FCT) is used for features extraction
from the thinned image. Besides that, the system used a standard database which is
ADBase database for evaluation. The extracted features were classified with KNearest
Neighbor (KNN) classifier based on cityblock distance function and the
experimental results show that the proposed system achieved 98.2% recognition
rate.

View Publication Preview PDF
Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Image Watermarking using Integer Wavelet Transform and Discrete Cosine Transform
...Show More Authors

In the current research work, a system of hiding a text in a digital grayscale image has been presented. The algorithm system that had been used was adopted two transforms Integer Wavelet transform and Discrete Cosine transformed. Huffman's code has been used to encoding the text before the embedding it in the cover image in the HL sub band. Peak Signal to Noise Ratio (PSNR) was used to measure the effect of embedding text in the watermarked image; also correlation coefficient has been used to measure the ratio of the recovered text after applying an attack on the watermarked image and we get a good result. The implementation of our proposed Algorithm is realized using MATLAB version 2010a.

View Publication Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Face Recognition Using Stationary wavelet transform and Neural Network with Support Vector Machine
...Show More Authors

Face recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o

... Show More
View Publication Preview PDF
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Color Image Steganography Based on Discrete Wavelet and Discrete Cosine Transforms
...Show More Authors

        The secure data transmission over internet is achieved using Steganography. It is the art and science of concealing information in unremarkable cover media so as not to arouse an observer’s suspicion. In this paper the color cover image is divided into equally four parts, for each part select one channel from each part( Red, or Green, or  Blue), choosing one of these channel depending on the high color ratio in that part. The chosen part is decomposing into four parts {LL, HL, LH, HH} by using discrete wavelet transform. The hiding image is divided into four part n*n then apply DCT on each part. Finally the four DCT coefficient parts embedding in four high frequency sub-bands {HH} in

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach
...Show More Authors

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF