In the last decade, 3D models gained interest in many applications, such as games, the medical field, and manufacture. It is necessary to protect these models from unauthorized copying, distribution, and editing. Digital watermarking is the best way to solve this problem. This paper introduces a robust watermarking method by embedding the watermark in the low-frequency domain, then selecting the coarsest level for embedding the watermark based on the strength factor. The invisibility of the watermark for the proposed algorithm is tested by using different measurements, such as HD and PSNR. The robustness was tested by using different types of attacks; the correlation coefficient was applied for the evaluati
... Show MoreIn the current research work, a system of hiding a text in a digital grayscale image has been presented. The algorithm system that had been used was adopted two transforms Integer Wavelet transform and Discrete Cosine transformed. Huffman's code has been used to encoding the text before the embedding it in the cover image in the HL sub band. Peak Signal to Noise Ratio (PSNR) was used to measure the effect of embedding text in the watermarked image; also correlation coefficient has been used to measure the ratio of the recovered text after applying an attack on the watermarked image and we get a good result. The implementation of our proposed Algorithm is realized using MATLAB version 2010a.
In this paper, an adaptive medical image watermarking technique is proposed based on wavelet transform and properties of human visual system in order to maintain the authentication of medical images. Watermark embedding process is carried out by transforming the medical image into wavelet domain and then adaptive thresholding is computed to determine the suitable locations to hide the watermark in the image coefficients. The watermark data is embedded in the coefficients that are less sensitive into the human visual system in order to achieve the fidelity of medical image. Experimental results show that the degradation by embedding the watermark is too small to be visualized. Also, the proposed adaptive watermarking technique can preserv
... Show MoreIn this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s
Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
'Steganography is the science of hiding information in the cover media', a force in the context of information sec, IJSR, Call for Papers, Online Journal
In this paper, a method is proposed to increase the compression ratio for the color images by
dividing the image into non-overlapping blocks and applying different compression ratio for these
blocks depending on the importance information of the block. In the region that contain important
information the compression ratio is reduced to prevent loss of the information, while in the
smoothness region which has not important information, high compression ratio is used .The
proposed method shows better results when compared with classical methods(wavelet and DCT).
Recently, digital communication has become a critical necessity and so the Internet has become the most used medium and most efficient for digital communication. At the same time, data transmitted through the Internet are becoming more vulnerable. Therefore, the issue of maintaining secrecy of data is very important, especially if the data is personal or confidential. Steganography has provided a reliable method for solving such problems. Steganography is an effective technique in secret communication in digital worlds where data sharing and transfer is increasing through the Internet, emails and other ways. The main challenges of steganography methods are the undetectability and the imperceptibility of con
... Show MoreThe aims of visible watermarking are to prevent the illegal copying of videos and images and to avoid the theft and unauthorized advertisement of the legitimate owners' content. The visible watermark is distinguishable with the naked eye. This makes it easily removed by an attacker. This paper proposes an anti-removable visible logo by double embedding using the discrete wavelet transform (DWT) and a chaotic map. The main purpose of this method is to prevent the removal attack and restore the original video without information loss after the logo is legally removed. DWT is used for both the cover area and the logo to embed sub-bands of information from the cover area into sub-bands of the logo. The main idea of using a chaotic m
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database