In this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show MoreThe Field Programmable Gate Array (FPGA) approach is the most recent category, which takes the place in the implementation of most of the Digital Signal Processing (DSP) applications. It had proved the capability to handle such problems and supports all the necessary needs like scalability, speed, size, cost, and efficiency.
In this paper a new proposed circuit design is implemented for the evaluation of the coefficients of the two-dimensional Wavelet Transform (WT) and Wavelet Packet Transform (WPT) using FPGA is provided.
In this implementation the evaluations of the WT & WPT coefficients are depending upon filter tree decomposition using the 2-D discrete convolution algorithm. This implementation w
... Show MoreAccurate detection of Electro Cardio Graphic (ECG) features is an important demand for medical purposes, therefore an accurate algorithm is required to detect these features. This paper proposes an approach to classify the cardiac arrhythmia from a normal ECG signal based on wavelet decomposition and ID3 classification algorithm. First, ECG signals are denoised using the Discrete Wavelet Transform (DWT) and the second step is extract the ECG features from the processed signal. Interactive Dichotomizer 3 (ID3) algorithm is applied to classify the different arrhythmias including normal case. Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database is used to evaluate the ID3 algorithm. The experimental resul
... Show MoreMultiple applications use offline handwritten signatures for human verification. This fact increases the need for building a computerized system for signature recognition and verification schemes to ensure the highest possible level of security from counterfeit signatures. This research is devoted to developing a system for offline signature verification based on a combination of local ridge features and other features obtained from applying two-level Haar wavelet transform. The proposed system involves many preprocessing steps that include a group of image processing techniques (including: many enhancement techniques, region of interest allocation, converting to a binary image, and Thinning). In feature extraction and
... Show MoreIn computer vision, visual object tracking is a significant task for monitoring
applications. Tracking of object type is a matching trouble. In object tracking, one
main difficulty is to select features and build models which are convenient for
distinguishing and tracing the target. The suggested system for continuous features
descriptor and matching in video has three steps. Firstly, apply wavelet transform on
image using Haar filter. Secondly interest points were detected from wavelet image
using features from accelerated segment test (FAST) corner detection. Thirdly those
points were descripted using Speeded Up Robust Features (SURF). The algorithm
of Speeded Up Robust Features (SURF) has been employed and impl
A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.
The wavelet transform has become a useful computational tool for a variety of signal and image processing applications.
The aim of this paper is to present the comparative study of various wavelet filters. Eleven different wavelet filters (Haar, Mallat, Symlets, Integer, Conflict, Daubechi 1, Daubechi 2, Daubechi 4, Daubechi 7, Daubechi 12 and Daubechi 20) are used to compress seven true color images of 256x256 as a samples. Image quality, parameters such as peak signal-to-noise ratio (PSNR), normalized mean square error have been used to evaluate the performance of wavelet filters.
In our work PSNR is used as a measure of accuracy performanc
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreIn modern times face recognition is one of the vital sides for computer vision. This is due to many reasons involving availability and accessibility of technologies and commercial applications. Face recognition in a brief statement is robotically recognizing a person from an image or video frame. In this paper, an efficient face recognition algorithm is proposed based on the benefit of wavelet decomposition to extract the most important and distractive features for the face and Eigen face method to classify faces according to the minimum distance with feature vectors. Faces94 data base is used to test the method. An excellent recognition with minimum computation time is obtained with accuracy reaches to 100% and recognition time decrease
... Show MoreThis paper introduces method of image enhancement using the combination of both wavelet and Multiwavelet transformation. New technique is proposed for image enhancement using one smoothing filter.
A critically- Sampled Scheme of preprocessing method is used for computing the Multiwavelet.It is the 2nd norm approximation used to speed the procedures needed for such computation.
An improvement was achieved with the proposed method in comparison with the conventional method.
The performance of this technique has been done by computer using Visual Baisec.6 package.