The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The structure of this paper includes an introduction to the definition of the nano topological space, which was defined by M. L. Thivagar, who defined the lower approximation of G and the upper approximation of G, as well as defined the boundary region of G and some other important definitions that were mentioned in this paper with giving some theories on this subject. Some examples of defining nano perfect mappings are presented along with some basic theories. Also, some basic definitions were presented that form the focus of this paper, including the definition of nano pseudometrizable space, the definition of nano compactly generated space, and the definition of completely nano para-compact. In this paper, we presented images of nan
... Show MoreSome Results on Fuzzy Zariski
Topology on Spec(J.L)
Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete. Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, rth moment, mean, variance, Moment Generating Function, Skewness, kurtosi
... Show MoreLet R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.
The aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
The main objective of this paper is to find the order and its exponent, the general form of all conjugacy classes, Artin characters table and Artin exponent for the group of lower unitriangular matrices L(3,? p ), where p is prime number.
In our work present, the application of strong-Lensing observations for some gravitational lenses have been adopted to study the geometry of the universe and to explain the physics and the size of the quasars. The first procedure was to study the geometrical of the Lensing system to determine the relation between the redshift of the gravitational observations with its distances. The second procedure was to compare between the angular diameter distances "DA" calculated from the Euclidean case with that from the Freedman models, then evaluating the diameter of the system lens. The results concluded that the phenomena are restricted to the ratio of distance between lens and source with the diameter of the lens noticing.