A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Let ℛ be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.
In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.
The aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.
Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.
Moreover some theorems about these notations are proved.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
الأثر V بالنسبة إلى sinshT و خواصه قد تم دراسته في هذا البحث حيث تم دراسة علاقة الأثر المخلص والاثر المنتهى التولد والاثر المنفصل وربطها بالمؤثرات المتباينة حيث تم بهنة العلاقات التالية ان الاثر اذا وفقط اذا مقاس في حالة كون المؤثر هو عديم القوة وكذلك في حالة كون المؤثر شامل فان الاثر هو منتهي التولد اي ان الغضاء هو منتهي التولد وايضا تم برهن ان الاثر مخلص لكل مؤثر مقيد وك\لك قد تم التحقق من انه لاي مؤثر مقي
... Show More