In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.
There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.
Let R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.
A restrictive relative clause (RRC hereafter), which is also known as a defining relative clause, gives essential information about a noun that comes before it: without this clause the sentence wouldn’t make much sense. A RRC can be introduced by that, which, whose, who, or whom. Givon (1993, 1995), Fox (1987), Fox and Thompson (1990) state that a RCC is used for two main functions: grounding and description. When a RRC serves the function of linking the current referent to the preceding utterance in the discourse, it does a grounding function; and when the information coded in a RRC is associated with the prior proposition frame, the RRC does a proposition-linking grounding function. Furthermore, when a RRC is not used to ground a new di
... Show MoreThroughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
With the development of high-speed network technologies, there has been a recent rise in the transfer of significant amounts of sensitive data across the Internet and other open channels. The data will be encrypted using the same key for both Triple Data Encryption Standard (TDES) and Advanced Encryption Standard (AES), with block cipher modes called cipher Block Chaining (CBC) and Electronic CodeBook (ECB). Block ciphers are often used for secure data storage in fixed hard drives, portable devices, and safe network data transport. Therefore, to assess the security of the encryption method, it is necessary to become familiar with and evaluate the algorithms of cryptographic systems. Block cipher users need to be sure that the ciphers the
... Show More Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
The purpose of this paper is to investigate the concept of relative quasi-invertible submodules motivated by rational submodules and quasi-invertible submodules. We introduce several properties and characterizations to relative quasi-invertiblity. We further investigate conditions under which identification consider between rationality, essentiality and relative quasi-invertiblity. Finally, we consider quasiinvertiblity relative to certain classes of submodules