In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
This research was from an introduction, three topics and a conclusion, as follows:
The first topic: the concept of Islamic banks and their emergence and development, which includes three demands are:
The first requirement: the concept of Islamic banks and types, and there are two requirements:
* Definition of Islamic banks language and idiom.
* Types of Islamic banks.
The second requirement: the emergence and development of Islamic banks.
Third requirement: the importance of Islamic banks and their objectives.
We learned about the concept of banks and their origins and how they developed and what are the most important types of Islamic banks
The second topic: Formulas and sources of financing in Islamic banks and
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.
Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.
The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.