In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreIn this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
In this paper, we define a cubic bipolar subalgebra, $BCK$-ideal and $Q$-ideal of a $Q$-algebra, and obtain some of their properties and give some examples. Also we define a cubic bipolar fuzzy point, cubic bipolar fuzzy topology, cubic bipolar fuzzy base and for each concept obtained some of its properties.
In the context of normed space, Banach's fixed point theorem for mapping is studied in this paper. This idea is generalized in Banach's classical fixed-point theory. Fixed point theory explains many situations where maps provide great answers through an amazing combination of mathematical analysis. Picard- Lendell's theorem, Picard's theorem, implicit function theorem, and other results are created by other mathematicians later using this fixed-point theorem. We have come up with ideas that Banach's theorem can be used to easily deduce many well-known fixed-point theorems. Extending the Banach contraction principle to include metric space with modular spaces has been included in some recent research, the aim of study proves some pro
... Show MoreA field experiment was conducted at the field of the Dept. of Field Crop Sci. / College of Agriculture / University of Baghdad . The objective was to determine the values of relative constant of three – way and double crosses of maize . Ten inbreds were used and crossed during spring and fall seasons of 2009 to produce three - way and double crosses , and ten hybrids were taken from each group . The ten hybrids were grown and selfed during spring 2010 to produce 2 seed . Three way and double crosses were sown with their parents and 2 seed during fall 2010 in RCBD with four replicates . Leaf area , total dry matter , row/ear , grain/ear , grain weight and grain weight/plant of hybrids , parents and 2 plants were taken . Results showed that
... Show MoreIn subterranean coal seam gas (CSG) reservoirs, massive amounts of small-sized coal fines are released during the production and development stages, especially during hydraulic fracturing stimulation. These coal fines inevitably cause mechanical pump failure and permeability damage due to aggregation and subsequent pore-throat blockage. This aggregation behavior is thus of key importance in CSG production and needs to be minimized. Consequently, such coal fines dispersions need to be stabilized, which can be achieved by the formulation of improved fracturing fluids. Here, we thus systematically investigated the effectiveness of two additives (ethanol, 0.5 wt % and SDBS, 0.001 and 0.01 wt %) on dispersion stability for a wide range of condit
... Show MoreAbstract The main purpose of the research is to clarify and investigate in details about Susan Glaspell’s role in shedding light on the predicament of women in American society in the early twentieth century showing how sense of the place played an important role in limiting the opportunities of female protagonists who try to escape the roles imposed upon them by society. Glaspell lived in the early twentieth century in the Midwest and tackled the important issues like: women's suffrage, birth control, socialism, union organizing when women were not able to vote or sit as a member on juries. Her Feminist cause is quite obvious through her works from her first one act play Suppressed Desire to the final three act play, Alison’s House. Th
... Show MoreIn this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Homomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show More