In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
We present the concept of maps Γ- periodi2 on Γ -near-ring S. Our main goal is to research and explore the presence and mapping traits such as h Γ –hom anti-Γ –hom, Γ –α-derivations of Γ -periodi2 on Γ- near-rings.
Nilpotency of Centralizers in Prime Rings
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
In this paper we introduce the notions of bi-ideal with respect to an element r
denoted by (r-bi- ideal ) of a near ring , and the notion fuzzy bi- ideal with respect
to an element of a near ring and the relation between F-r-bi-ideal and r-bi-ideal of
the near ring, we studied the image and inverse image of r-bi- ideal under
epimomorphism ,the intersection of r-bi- ideals and the relation between this ideal
and the quasi ideal of a near ring, also we studied the notion intuitionistic fuzzy biideal
with respect to an element r of the near ring N, and give some theorem about
this ideal .
Let R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.
Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping : R R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.
In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e 0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR R and Re R .
(ii) xR 0 implies x 0 .
(iii ) eRx 0 implies x 0( and hence Rx 0 implies x 0) .
(iv) exeR(1 e) 0 implies exe 0 .
If D is a derivable map of R satisfying D(R ) R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.
Let S be a prime inverse semiring with center Z(S). The aim of this research is to prove some results on the prime inverse semiring with (α, β) – derivation that acts as a homomorphism or as an anti- homomorphism, where α, β are automorphisms on S.