Fine aggregate (Sand) is a necessary material used in concrete construction purposes, it’s naturally available and it’s widely used around the world for different parts of construction in any building mainly for filling the voids between gravel. Sand gradation is important for different composite materials, and it gives good cohesion when compared with coarse sand that provides strength for the building. Therefore, sand is necessary to be tested before it is used and mixed with other building materials in construction and the specimen must be selected carefully to represent the real material in the field. The specimen weight must be larger than the required weight for test. When the weight of the sand sample increases the approximate precision desired increases. In this study, an approximated multilinear function for Fuller’s curve on the logarithmic scale was used to simulate the fine aggregate (sand) numerically. In order to get the effect of different samples, a stochastic analysis was done by employing 100 realizations of specimens, has been conducted to study the effect of sampling on sieve analysis and the root mean square error (RMSE) for the variation between desired and sampled curves. Then the results were compared with available specifications recommendations.
Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreIn this study used three methods such as Williamson-hall, size-strain Plot, and Halder-Wagner to analysis x-ray diffraction lines to determine the crystallite size and the lattice strain of the nickel oxide nanoparticles and then compare the results of these methods with two other methods. The results were calculated for each of these methods to the crystallite size are (0.42554) nm, (1.04462) nm, and (3.60880) nm, and lattice strain are (0.56603), (1.11978), and (0.64606) respectively were compared with the result of Scherrer method (0.29598) nm,(0.34245),and the Modified Scherrer (0.97497). The difference in calculated results Observed for each of these methods in this study.
Aqueous extract of poppy plant) Papaver nudicaule) with five concentrations (50, 100, 150, 200 and 250) mg/l were used to anesthetize fingerlings of the common carp Cyprinus carpio (Mean total length 8.91 ± 0.31 cm and mean total weight 7.72 ± 1.19 gm) instead of the traditional use of MS-222. Results showed that extracted solution of poppy have partial and overall anesthesia effect on these fishes with inverse relationship between the concentrations used and the time needed to reach partial and overall anesthesia, and also direct relationship between concentrations used and time needed for fish recovery. Best results were obtained by using a concentration of 250 mg/l, where time for partial anesthesia was 8 ± 1.52 m
... Show MoreIn this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreBackground: Currently there are four general approaches to correct refractive errors: refractive corneal surgery, crystalline lens surgery and implantation of an intraocular lens in anterior or posterior chamber.
Objective: To evaluate the predictability, safety and stability of toric phakic implantable collamer lens implantation to correct moderate to high myopic astigmatism. in Eye Specialty Private Hospital, Baghdad, Iraq.
Type of the Study: a prospective non randomize intervention study.
Methods: 60 eyes of 40 patients underwent implantation of a toric implantable collamer lens (V4c design).Mean spherical refraction was ₋11.32 diopter
... Show MoreThe aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show More