Preferred Language
Articles
/
CxdDso0BVTCNdQwCEhlU
Numerical solution to inverse coefficient problem for hyperbolic equation under overspecified condition of general integral type

Scopus Crossref
View Publication
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Placement Inverse Source Problem under Partition Hyperbolic Equation

In this article, the inverse source problem is determined by the partition hyperbolic equation under the left end flux tension of the string, where the extra measurement is considered. The approximate solution is obtained in the form of splitting and applying the finite difference method (FDM). Moreover, this problem is ill-posed, dealing with instability of force after adding noise to the additional condition. To stabilize the solution, the regularization matrix is considered. Consequently, it is proved by error estimates between the regularized solution and the exact solution. The numerical results show that the method is efficient and stable.

Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Apr 01 2015
Journal Name
Mathematical Methods In The Applied Sciences
Scopus (28)
Crossref (21)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Determination of Thermal Conductivity in Heat Equation under Nonlocal Boundary Conditions and Integral as Over specified Condition

In this article, an inverse problem of finding timewise-dependent thermal conductivity has been investigated numerically. Numerical solution of forward (direct) problem has been solved by finite-difference method (FDM). Whilst, the inverse (indirect) problem solved iteratively using Lsqnonlin   routine  from MATLAB. Initial guess for unknown coefficient expressed by explicit relation   based on nonlocal overdetermination conditions and intial input data .The obtained numrical results are presented and discussed in several figures and tables. These results are accurate and stable even in the presense of noisy data.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Solution to Recover Time-dependent Coefficient and Free Boundary from Nonlocal and Stefan Type Overdetermination Conditions in Heat Equation

This paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via

... Show More
Scopus (10)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Mixed Volterra – Fredholm Integral Equation Using the Collocation Method

Volterra Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cascade-Forward Neural Network for Volterra Integral Equation Solution

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Solution for Two-Sided Stefan Problem

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF