Preferred Language
Articles
/
CxdDso0BVTCNdQwCEhlU
Numerical solution to inverse coefficient problem for hyperbolic equation under overspecified condition of general integral type
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Advances In The Theory Of Nonlinear Analysis And Its Application
Numerical identification of timewise dependent coefficient in Hyperbolic inverse problem
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Mathematical Methods In The Applied Sciences
An inverse problem of finding the time-dependent diffusion coefficient from an integral condition
...Show More Authors

View Publication
Scopus (28)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Determination of time-dependent coefficient in inverse coefficient problem of fractional wave equation
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Finding timewise diffusion coefficient from nonlocal integral condition in one-dimensional heat equation
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method
...Show More Authors

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Mixed Volterra – Fredholm Integral Equation Using the Collocation Method
...Show More Authors

Volterra Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cascade-Forward Neural Network for Volterra Integral Equation Solution
...Show More Authors

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jul 01 2012
Journal Name
International Journal Of Computer Mathematics
Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods
...Show More Authors

View Publication
Crossref (11)
Crossref
Publication Date
Fri Aug 30 2024
Journal Name
Iraqi Journal Of Science
A fourth Order Pseudoparabolic Inverse Problem to Identify the Time Dependent Potential Term from Extra Condition
...Show More Authors

     In this work, the pseudoparabolic problem of the fourth order is investigated to identify the time -dependent potential term under periodic conditions, namely, the integral condition and overdetermination condition. The existence and uniqueness of the solution to the inverse problem are provided. The proposed method involves discretizing the pseudoparabolic equation by using a finite difference scheme, and an iterative optimization algorithm to resolve the inverse problem which views as a nonlinear least-square minimization. The optimization algorithm aims to minimize the difference between the numerical computing solution and the measured data. Tikhonov’s regularization method is also applied to gain stable results. Two

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Numerical Solution for Linear Fredholm Integro-Differential Equation Using Touchard Polynomials
...Show More Authors

A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.

 

View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref